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1. Laser Safety 

The laser we use in this experiment is a Helium-Neon gas laser (Uniphase, U.S.) with a wavelength 

of 633nm, and an output power of 0.95 mW, which is classified as a CLASS 2 LASER PRODUCT. 

 
 

A Class 2 laser is safe because the blink reflex will limit the exposure to no more than 0.25 seconds. 

It only applies to visible-light lasers (400–700 nm). Class-2 lasers are limited to 1 mW continuous 

wave, or more if the emission time is less than 0.25 seconds or if the light is not spatially coherent. 

Intentional suppression of the blink reflex could lead to eye injury. 

2. Introduction 

Ray optics is a convenient tool to determine imaging characteristics such as the location and 

magnification of the image. But ray optics cannot provide the wave properties of light and 

associated processes like diffraction which are essential to a complete description of the imaging 

system, because these processes determine the image contrast, the resolution of optical devices, 

and the effect of spatial filters. One possible wave-optical treatment considers the Fourier spectrum 

(space of spatial frequencies) of the object and the transmission of the spectral components through 

the optical system. This is referred to Fourier optics. 

In Fourier optics, Fourier transforms are used to study optical phenomena. The physical concept 

is based on the wavelike character of light. By regarding every light-wave as a superposition of 

plane waves it turns out that optical image formation can easily be treated within the mathematical 

framework of Fourier methods. This is often used in image processing, spatial filtering and 

Holography. In this laboratory we will use a He-Ne-laser and a set of lenses to visualize and 

manipulate Fourier transformed images. 

In this lab you will learn the principles of spatial filtering to visualize and manipulate Fourier 

transformed images with a He-Ne-laser and a set of lenses. 
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3. Theory 

3.1 Mathematical concepts 

3.1.1 Fourier series 

The basic Fourier theorem states: A periodic function 𝑓(𝑡), with angular frequency 𝜔, can be 

considered as the sum of harmonic functions whose frequencies are multiples of 𝜔, where 𝜔 is 

called the fundamental frequency. This can be mathematically expressed as: 

 𝑓(𝑡) = 𝑎0 + ∑(𝑎𝑛

∞

𝑛=1

cos 𝑛𝜔𝑡 + 𝑏𝑛 sin 𝑛𝜔𝑡) (1) 

or, 

 𝑓(𝑡) = ∑ 𝑐𝑛

+∞

𝑛=−∞

𝑒𝑖𝑛𝜔𝑡 (2) 

The amplitude of each term of the series can be calculated using the following relations: 

 𝑎0 =
1

𝑇
∫ 𝑓(𝑡)d𝑡

𝑇

0

 (3) 

 𝑎𝑛 =
2

𝑇
∫ 𝑓(𝑡) cos 𝑛𝜔𝑡 d𝑡

𝑇

0

 (4) 

 𝑏𝑛 =
2

𝑇
∫ 𝑓(𝑡) sin 𝑛𝜔𝑡 d𝑡

𝑇

0

 (5) 

 𝑐𝑛 =
1

𝑇
∫ 𝑓(𝑡)𝑒−𝑖𝑛𝜔𝑡d𝑡

𝑇

0

 (6) 

 

where 𝑇 =
2𝜋

𝜔
 is the period of 𝑓(𝑡). 

While in our case we are not dealing with time dependent but rather with position dependent 

functions, we will use the spatial position parameter x instead of 𝑡, the spatial frequency 𝑘 instead 

of the angular frequency 𝜔 and the wavelength 𝜆 instead of the period 𝑇. 

3.1.2 Fourier transform 

A more general definition considers a non-periodic function 𝑓(𝑥). In this case, Fourier series need 

to be replaced by Fourier integrals. This can be understood by thinking of a non-periodic function 

as a function with an infinite period. Therefore, to express such a function as a Fourier 

decomposition, it is necessary to sum over a continuous spectrum of frequencies. 



3 
 

 𝑓(𝑥) = ∫ 𝐹(𝑘)𝑒2𝜋𝑖𝑘𝑥
∞

−∞

d𝑘 (7) 

with: 

 𝐹(𝑘) = ∫ 𝑓(𝑥)𝑒−2𝜋𝑖𝑘𝑥
∞

−∞

d𝑥 (8) 

3.1.3 Convolution 

The convolution of two functions 𝑓 and 𝑔 is defined as the integral of the product of the two 

functions after one is reversed and shifted. The result of this so called integral transform is a third 

function giving the area of overlap between the two functions 𝑓 and 𝑔 as a function of the amount 

that one of them is translated: 

 ℎ(𝑋) = 𝑓(𝑥) ⊗ 𝑔(𝑥) = ∫ 𝑓(𝑥)
∞

−∞

𝑔(𝑋 − 𝑥)d(𝑥) (9) 

Taking the Fourier transform of these functions it becomes clear that the convolution corresponds 

to a simple multiplication in Fourier space, i.e.: 

 𝐻(𝑘) = 𝐹(𝑘) ∙ 𝐺(𝑘) (10) 

This knowledge will be very important when doing the experiments. 

3.2 Physical concepts 

3.2.1 Diffraction 

Diffraction can be defined as 'any deviation of a light ray from rectilinear propagation, which is 

not caused by reflection nor refraction'. It was already known for centuries that light rays, passing 

through a small aperture in an opaque screen do not form a sharp shadow on a distant screen. That 

smooth transition from light to shadow could only be explained by assuming that light has a 

wavelike character. Diffraction theory has been further developed by Huygens, Fresnel, Kirchhoff 

and Sommerfield. 

An important starting point for understanding diffraction phenomena and gaining insight in the 

theory of Fourier optics is the Huygens-Fresnel principle. According to this principle, each point 

of a wavefront (regardless whether its a light- or mechanical wave) acts as a punctual (light)source. 

The resulting wave is the sum of each of those 'wavelets'. The Huygens-Fresnel principle is 

illustrated for small and large apertures in Figure 1. 



4 
 

 

Figure 1: Illustration of diffraction based on the Huygens-Fresnel principle 

for small (left) and large(right) apertures[2]. 

 

We can now turn to a more quantitative formulation of the Huygens-Fresnel principle. Each of the 

punctual sources mentioned in the principle will emit spherical waves that decrease in amplitude 

as the distance increases. These waves can be described by the following formula: 

 Ψ𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 =
𝐴

𝑟
𝑒𝑖𝑘𝑟 (11) 

with 𝐴 the initial amplitude, r the distance from the source and 𝑘 =
2𝜋

𝜆
 the wavenumber. 

It is useful to note that in these laboratory notes, we will limit ourselves to the approximation of a 

scalar theory. We will only consider one single component of the electric or magnetic field vector. 

This also means that we neglect the (possible) coupling between electric and magnetic fields. By 

comparing this approximation with exact theories and experiments, it turns out that this scalar 

diffraction theory is good whenever the diffracting aperture is large compared with the wavelength 

of the light, and the diffracting field is calculated at a large distance from the aperture. 

To calculate the diffraction pattern produced by an arbitrary aperture 𝐴(𝑥;  𝑦) at a distance 𝑧 away 

from this aperture, we have to take the sum of the waves produced by punctual sources at every 

point of the aperture. This results in the following integral: 

 𝐴′(𝑥′, 𝑦′) =
1

𝑖𝜆
∫ ∫ 𝐴(𝑥, 𝑦)

𝑧

𝑟

𝑒𝑖𝑘𝑟

𝑟
d𝑥

∞

−∞

d𝑦
∞

−∞

 (12) 
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Figure 2: Diffraction of the light incident on an aperture. 

where, 𝑟 = √(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + 𝑧2  is the distance between a given point (𝑥;  𝑦)  of the 

aperture and a point (𝑥0;  𝑦0) of the observation plane. We will not focus on the derivation of this 

formula in which the factor 
1

𝑖𝜆
 comes up. The factor of 

𝑧

𝑟
 corresponds to the cosine of the angle 

between the vectors 𝑟 and 𝑧. This diffraction integral is a special case of the Fresnel-Kirchho 

diffraction formula REF. 

3.2.2 Fresnel and Fraunhofer approximation 

Now we will simplify the diffraction integral (12) further by making some additional assumptions. 

Suppose that the axial distance z is much larger than the transverse dimensions. Then 

 cos(𝑧, 𝑟) =
𝑧

𝑟
≅ 1 (13) 

The error is smaller than 5%, when the angle is smaller than 18°. Also the remaining 𝑟 in the 

denominator of (12) may be replaced by 𝑧. In the exponential we have to be a little bit more careful 

since in a phase term, small differences have a bigger effect. Instead of replacing 𝑟 by 𝑧 we rather 

develop it in a binomial expansion, retaining only the first two terms: 

 

𝑟 = √(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + 𝑧2 

≅ 𝑧 [1 +
1

2
(

𝑥 − 𝑥′

2
)

2

+
1

2
(

𝑦 − 𝑦′

2
)

2

] 

(14) 

≅ 𝑧 +
𝑥2 + 𝑦2

2𝑧
+

𝑥𝑥′ + 𝑦𝑦′

2𝑧
+

𝑥′2 + 𝑦′2

2𝑧
 

Implementing this in equation (12) results in the so called Fresnel diffraction integral: 
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 𝐴′(𝑥′, 𝑦′) =
𝑒𝑖𝑘𝑧

𝑖𝜆𝑧
𝑒

𝑖𝑘
2𝑧

(𝑥′2+𝑦′2) ∫ ∫ 𝐴(𝑥, 𝑦)𝑒
𝑖𝑘
2𝑧

(𝑥2+𝑦2)𝑒−
𝑖2𝜋
𝜆𝑧

(𝑥𝑥′+𝑦𝑦′)d𝑥
∞

−∞

d𝑦
∞

−∞

 (15) 

The integral can be interpreted as a 2-dimensional Fourier transform of 𝐴(𝑥, 𝑦)𝑒
𝑖𝑘

2𝑧
(𝑥2+𝑦2)

 with 

spatial frequencies 𝑓𝑥 = −
𝑥′

𝜆𝑧
 and 𝑓𝑦 = −

𝑦′

𝜆𝑧
. 

As this result is valid close to the aperture, it is called the near-field approximation. This   

approximation is however not valid too close to the aperture, and it is not easy to calculate exactly 

the limits of validity. A sufficient condition is that the higher order term in the expansion be small, 

but this is not a necessary condition. Indeed, it suffices that they do not change the value of the 

integral too much after integration, and this also depends on the aperture function 𝐴(𝑥;  𝑦). The 

general conclusion of deeper analyses is that the accuracy of the Fresnel approximation is 

extremely good to distances that are very close to the aperture. 

Whereas in the Fresnel regime, we still take into account that the wavefronts of the point sources 

are curved (by using the binomial expansion up to 2 terms in the exponential). If we go even further 

away from the screen, that is not necessary anymore. Indeed, for 𝑧 → ∞ we can assume that 
𝑥2+𝑦2

𝑧
→ 0. This results in the Fraunhofer diffraction integral: 

 𝐴′(𝑥′, 𝑦′) =
𝑒𝑖𝑘𝑧

𝑖𝜆𝑧
𝑒

𝑖𝑘
2𝑧

(𝑥′2+𝑦′2) ∫ ∫ 𝐴(𝑥, 𝑦)𝑒−
𝑖2𝜋
𝜆𝑧

(𝑥𝑥′+𝑦𝑦′)d𝑥
∞

−∞

d𝑦
∞

−∞

 (16) 

=
𝑒𝑖𝑘𝑧

𝑖𝜆𝑧
𝑒𝑖𝜋𝜆(𝑓𝑥

2+𝑓𝑦
2) ∫ ∫ 𝐴(𝑥, 𝑦)𝑒

−
𝑖2𝜋
𝜆𝑧

(𝑥𝑥′+𝑦𝑦′)
d𝑥

∞

−∞

d𝑦
∞

−∞

 

Since we will only observe the intensity of the signal, the phase terms in front of the integrals can 

be considered to be constant and do not have to bother us at all. This approximation is valid as 

long as 

 𝑧 >>
𝑘(𝑥2 + 𝑦2)𝑚𝑎𝑥

2
 (17) 

And it clearly shows that the field in the image plane can be interpreted as the Fourier transform 

of the field in the object plane (in this case the aperture). 

3.2.3 Lenses in Fourier systems 

 Intuitive understanding from geometrical optics 

Fourier optics is a very mathematical and abstract field in optics. To facilitate understanding, it is 

therefore useful to start with some intuitive notes (which are by no means meant to be a correct 

and complete physical model), based on well-known geometrical optics principles. 
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Lenses transform angles to position and vice versa. A point source in the front focal plane of the 

lens results in parallel rays behind the lens. A ray with a large angle before the lens becomes a 

parallel ray far away from the center in the back focal plane. A ray with a small angle before the 

lens ends up close to the center in the back focal plane.  

On the other hand, when a parallel beam is incident on a lens, the rays will be focused in the back 

focal plane. The ray that goes through the center of the front focal plane will have an angle of zero 

degrees after the lens. The further away the rays are from the center (in the front focal plane), the 

larger the angle in the back focal plane. 

In both cases it appears that, when comparing the situation in the front and the back focal plane of 

the lens, angles have been transformed to position and vice versa. This is illustrated in figure 3. 

Also, the lateral position of the focus in figure 3 d depends on the angle of the incident plane waves. 

Again this can be turned around. The lateral position of the point source in figure 3 c determines 

the angle of the parallel beam behind the lens. 

 

Figure 3: Lenses in geometrical optics: a. and b. The different angles in the front focal plane 

result in different positions in the back focal plane. c. and d. The different positions in the front 

focal plane result in different angle at the back focal plane. 

a b 

c d 
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In Fourier optics every optical wave is considered as a sum of plane waves with different angles, 

this is also called the angular spectrum of plane waves. A plane wave translates to a set of parallel 

rays in geometrical optics. Considering the previous we can assume that this spectrum of plane 

waves will be depicted as different lateral positions in the back focal plane of the lens. 

Infinity is brought to the focal plane. Let us consider two parallel rays. We could say these rays 

only cross at infinity. We can make those rays cross at a finite distance by adding a lens. They will 

now cross in the back focal plane of the lens. The lens has brought a point at infinity to its focal 

plane. From the previous section we know that the Fraunhofer regime, in which the obtained field 

is the Fourier transform of the original field distribution, is only obtained at infinity. However a 

lens seams to bring points at infinity to its focal plane, so that we expect to find the Fourier 

transformed field of whatever is in the front focal plane, in the back focal plane of the lens. 

 Phase transformation by a lens 

In this section we calculate the phase transform a plane monochromatic wave undergoes when it 

passes through a lens. We will assume a thin lens, which means the lateral position of the light ray 

is the same in the back tangent plane (𝝈′) as in the front one (𝝈). The only thing that happens is 

that inside the lens, which is made of a material (glass) with refractive index 𝒏, the light travels 

slower than in air. This retardation of the light is proportional to the local thickness ∆(𝒙, 𝒚) of the 

lens. If we call ∆𝒎𝒂𝑥  the maximum thickness of the lens, we can write the phase retardation 

between the two tangent planes as: 

𝜙(𝑥, 𝑦) = 𝑘𝑛Δ(𝑥, 𝑦) + 𝑘(∆𝑚𝑎𝑥-∆(𝑥, 𝑦))                                         (18) 

In which the first term represents the propagation through the lens, and the second term the 

propagation through the air. 

For calculating ∆(𝑥;  𝑦) we will split up the lens in two parts as shown in figure 4. The radius of 

curvature R is defined such that it is positive for a concave surface, and negative for a convex one. 

 ∆(𝑥, 𝑦) = ∆1(𝑥, 𝑦) + ∆2(𝑥, 𝑦) (19) 

and, 

 ∆𝑚𝑎𝑥= ∆𝑚𝑎𝑥,1 + ∆𝑚𝑎𝑥,2 (20) 

we get: 

 ∆1(𝑥, 𝑦) = ∆𝑚𝑎𝑥,1 − (𝑅1 − √𝑅1
2 − 𝑥2 − 𝑦2) (21) 

= ∆𝑚𝑎𝑥,1 − 𝑅1 (1 − √1 −
𝑥2 + 𝑦2

𝑅1
2 ) 
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Figure 4: Parameters for the calculation of the phase delay of a thing lens. 

and 

 ∆2(𝑥, 𝑦) = ∆𝑚𝑎𝑥,2 − (−𝑅2 − √𝑅2
2 − 𝑥2 − 𝑦2) (22) 

= ∆𝑚𝑎𝑥,2 + 𝑅2 (1 − √1 −
𝑥2 + 𝑦2

𝑅2
2 ) 

These expressions can be simplified in the paraxial approximation: 

 √1 −
𝑥2 + 𝑦2

𝑅2
≅ 1 −

𝑥2 + 𝑦2

𝑅2
 (23) 

hence 

 ∆(𝑥, 𝑦) = ∆𝑚𝑎𝑥 −
𝑥2 + 𝑦2

2
(

1

𝑅1
−

1

𝑅2
) (24) 

If we call 𝐴𝑙 the field at the front tangent plane 𝜎, and 𝐴𝑙′ the  field in the back tangent plane 𝜎′,we 

can write 
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 𝐴𝑙′ = 𝑒𝑖𝑘𝑛∆𝑚𝑎𝑥𝑒
−𝑖𝑘(𝑛−1)

𝑥2+𝑦2

2
(

1
𝑅1

−
1

𝑅2
)
𝐴𝑙 

(25) 

Now we can define a single parameter 𝑓, which we call focal distance to combine all physical 

parameters 𝑛, 𝑅1, 𝑅2 from the lens: 

 
1

𝑓
= (𝑛 − 1) (

1

𝑅1
−

1

𝑅2
) (26) 

So that the final transformation by the lens in the paraxial approximation looks like 

 𝐴𝑙′ = 𝑒𝑖𝑘𝑛∆𝑚𝑎𝑥 𝑒
−𝑖

𝑘
2𝑓

(𝑥2+𝑦2)
𝐴𝑙 

(27) 

 

 Fourier transforming properties of lenses 

The calculations belonging to this section will be up to you as part of the theoretical exercises. 

You will consider a certain field distribution at a distance 𝑑 in front of a thin lens met focal length 

𝑓, and calculate the resulting field in the back focal plane of this lens. You may assume that 

distances 𝑑 and 𝑓 are large enough so that the Fresnel diffraction regime is valid. Be sure to check 

the case 𝑑 =  𝑓. 

3.3 Theoretical exercises 

Before starting the lab work, it is important to have read and understood the theory. These exercises 

check your understanding of the mathematical and physical concepts behind Fourier optics. You 

are also challenged to think about how to apply all this in a lab situation. 

Mathematical concepts of Fourier transformation 

 Produce a graphical representation of the Fourier transform of a rectangular pulse. 

Comment on the relation between the pulse width and the distance between the maxima of 

its Fourier transform. 

 Given are two rectangular pulses 𝑓(𝑥) and 𝑔(𝑥), with an amplitude 1 and a width of 4𝜋. 

Plot those functions and their convolution in one plot. In another plot, display the Fourier 

transforms of all 3 functions. Comment. 

Physical concepts of Fourier optics 

 With a simple setup containing an aperture, a laser (with beam expander) and a screen, the 

Fraunhofer or far-field image of the aperture is displayed on the screen. How can we, 

without changing the positions of the light source, aperture and screen, change to the near-
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field or Fresnel image of this aperture on the screen? What do you expect when your 

proposed change is pushed to the limit? 

 Calculate how an image at a distance gets transformed by a lens (paragraph 2.2.3.3). 

Explain each step. 

Theoretical knowledge application 

 Look at the setup depicted in figure 5. Explain what happens in this setup. Why are certain 

lenses chosen at certain places? How can you manipulate the final image? Use geometrical 

optics to calculate the size of the final image on the CCD camera. Represent also 

graphically. How would you change this set-up in order to be able to see the Fourier 

transform of the object on an extra CCD camera? 

 
Figure 5: Illustration of the image manipulation setup 

 

 Graphically represent a rectangular function together with its Fourier series, which is 

truncated after 1, 2, 3, ... terms. What happens to the Fourier series as more and more terms 

are involved. How can you relate this to image contrast? How could you use this in 

combination with the setup from the exercise above? 

4. Experiment 

4.1 Laser alignment 

It may very well be that the laser alignment is the most time consuming step of this lab work. 

Follow these steps to align all components in the most efficient way. 

1. Put the Laser and the CCD camera on the rails. Adjust the heights so that it is within the 

range of the other components. Now fix the laser at the beginning of the rails, and slide the 

camera back and forth to check that the laser beam reaches the middle of the CCD chip at 

each position. 

2. Put the beam expander so close to the laser that you can see the circles of red laser light on 

the wall. Adjust the beam expander to center the circles around the same center point, put 

the CCD onto the rails again and check whether the beam is still parallel to the rails. 

     beam expander 

                         300mm                                 500mm                          50mm 

 

 

 

 

 

 laser        objective                         object (3cm high)                                         camera 

                          29.5cm                                 42.5cm                    50cm        5cm 
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3. Put the first lens at a distance of maximum 1 focal distance away from the beam expander. 

You can use the target caps on the lens to check its correct height. Use a white card to 

check if the beam is equally broad at each position. Slightly adjust the position of the lens 

if not. Now move the CCD camera back and forth again and adjust the lens further if needed. 

4. Follow the same strategy to put the other lenses in position. 

5. If everything is aligned correctly, changing the position of the object in figure 5 should not 

change its size on the CCD camera; only the sharpness will be influenced. 

4.2 Fundamental experiments 

In this part you will first look at the Fourier image of a grating and a circular aperture. The setup 

is as in figure 6. Do you find the Fourier images you expected? For the grating, measure the 

distances between the maxima and calculate the grating period. 

 

Figure 6: Illustration of the Fourier transform setup. 

The basic setup for the next experiments is the one in figure 5. However we want to image the 

Fourier image at the same time using a beamsplitter behind the second lens. 

Place an S-shaped aperture in the object plane. Find out which object you have to use in the Fourier 

plane in order to get multiple S'es on a vertical, respectively horizontal line as a final image. (Think 

about the convolution principle.) 

4.3 Image manipulation 

We will use the same setup as for the multiplication experiment, and two new images in the object 

plane. The first image is an image of a house built up of lines with different orientations. This can 

be used to improve your understanding of what is happening. The second image is a photo of a 

church, which is more complex and realistic than the line house. Make the following images and 

explain what you see: 

 A sharp image without any filtering. 

 An image where the horizontal, respectively vertical edges are emphasized. 

 An image that looks not sharp. The edges are smoothed out. 

          laser     objective                    object                                                  camera 

                          29.5cm                                 42.5cm                    50cm        

 

 

 

 

 

     beam expander 

                         300mm                              500mm            
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 An image where all edges are emphasized. 

4.4 Other applications: Text recognition 

The setup in figure 5 can also be used to do text recognition. Think about the following situation: 

You have a piece of text in the object plane, and want to find the location of the o's in this text. 

What filter do you have to place in the Fourier plane? Why is this technique hard to perform in 

practice? Does it work equally well with all letters? Why does one want to use the Fourier 

transform in order to recognize text? 
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