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1 Introduction
The term microwaves refers to alternating electromagnetic signals with frequencies between
300 MHz and 300 GHz, or wavelengths between 1 m and 1 mm. Because of the longer wave-
lengths with respect to the visible and infrared parts of the electromagnetic spectrum, mi-
crowaves exhibit unique properties. For instance, microwave radiation can penetrate through
cloud cover, haze, dust, and even rain as they are less susceptible to atmospheric scattering. In
addition, various molecules and atoms exhibit spectral lines in the microwave range. Microwave
applications are found in fields such as

• Wireless communication: mobile networks, WLAN, satellite communication, satellite
navigation systems (GPS, Galileo, ...),

• Radiometry: environmental remote sensing (atmosphere and surface of the Earth and
other planets), radio astronomy (molecular gas clouds, quasars, the Sun), security (con-
cealed threat detection),

• Radar systems for commercial, scientific and military purposes.

The Microwave Physics group at the University of Bern is specialized in microwave radiom-
etry and remote sensing of the Earth’s atmosphere and surface. The group designs, builds,
and operates passive microwave radiometers for applications such as wind, water vapour and
ozone monitoring. It also actively participates in the development of space based radiometers
for the missions of the European Space Agency (ESA). Characterization of electric and mag-
netic material parameters is a task often related to the instrument development and analysis of
observational data. The permittivity and permeability of a microwave absorbing material need
to be accurately known in order to design a high-performance blackbody calibration target for
a radiometer. This is also the case when designing low-loss dielectric vacuum windows for a
cryostat of a cryogenically cooled radiometer: especially the radio astronomical radiometers are
cooled in a cryostat to obtain better sensitivity, and the vacuum window allows the electromag-
netic signal from the observed target to enter it. Furthermore, characterization of the material
parameters of snow, ice and soil samples allows one to derive the thicknesses of surface layers
from remote sensing data obtained from an airplane or a satellite.

This laboratory exercise demonstrates how the permittivity of a dielectric sample can be mea-
sured using a cylindrical waveguide cavity resonator. In addition to learning to measure the
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permittivities of different materials, the goal of the exercise is to understand the position of
microwaves in the electromagnetic spectrum, to review the meaning of permittivity, to become
more familiar with waveguides, waveguide modes, and resonators, and to gain first experience
with a vector network analyzer (VNA) that is an essential tool in microwave measurements.

2 Theory of a Cylindrical Cavity Resonator
For electromagnetic oscillations with wavelengths between a few decimeter and a few millime-
ter, resonant circuits are composed of cavity resonators which exhibit highly conducting bound-
aries. Depending on the shape and size of the resonator, resonances occur at certain frequencies
in different types of field patterns called modes (see Appendix A and B). Assuming a cylindrical
cavity with its main axis oriented in z-direction, one distinguishes between transverse electric
(TE) modes, where Ez = 0, and transversal magnetic (TM) modes, where Hz = 0.

For the mathematical derivation of TE and TM modes in cylindrical cavities, the common
procedure taken from [1–5] is used, where Maxwell’s equations in frequency domain are ap-
plied:

∇ · E =
ρ

ε
,

∇ ·B = 0,

∇× E = −iωB, and
∇×H = j + iωεE . (1)

The time dependence is assumed to be eiωt. Hence, the derivation with respect to time is con-
sidered by the factor iω in the equations above. As no free charges nor conducting materials
exist inside the cavity, Maxwell’s equation reduce to

∇ · E = 0,

∇ ·B = 0,

∇× E = −iωµH, and
∇×H = iωεE . (2)

The application of the rotation operator as well as a substitution leads to the homogeneous
Helmholtz equation

∇2E = −µεω2E and
∇2H = −µεω2H . (3)

For waves inside a waveguide which travel in z-direction, it is useful to split the wave into a
transverse and longitudinal part as:

∇2E = ∇2
tE +

∂2E

∂z2
. (4)

In direction of propagation (z-direction), Ez has the form

Ez = Et · e±γz (5)
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and it has to fulfill
∇2
tEz = −(γ2 + k2)Ez = −p2Ez (6)

with

∇2
t = ∇2 − ∂2

∂z2
. (7)

The analog holds for the magnetic field in (3).
For the transverse part and in case of cylindrical symmetry, the following ansatz is appropri-

ate:
Et = R(r)θ(φ) . (8)

Using the Laplace operator for cylindrical coordinates, (6) may be written as

1

r

∂

∂r

(
r
∂Rθ

∂r

)
+

1

r2

∂2

∂φ2
Rθ = −p2Rθ . (9)

or
1

R

(
r2∂

2R

∂r2
+ r

∂R

∂r

)
+ r2p2 =

−1

θ

∂2θ

∂φ2
= `2 . (10)

For a non-trivial solution, the r-depending as well as the φ-depending terms have to equal a
constant `2. The two independent solutions of the r- and φ-dependent portions are

∂2θ

∂φ2
= −`2θ (11)

and

r2∂
2R

∂r2
+ r

∂R

∂r
+R

(
p2r2 − `2

)
= 0 , (12)

respectively. The solution of (11) is

θ(φ) = A sin(`φ) +B cos(`φ) , (13)

and the solution of the Bessel differential equation (12) is given by

R(r) = CJ`(pr) +DN`(pr) , (14)

where J`(pr) is a Bessel function andN`(pr) is a Neumann function. As the Neumann functions
exhibit a singularity at r = 0, they do not represent a physically meaningful solution. Hence,
only the Bessel function J` is considered. The Bessel functions of different orders and their
derivatives are depicted in Appendix C. Using these functions, the following relation holds for
Ez as well as for Hz:

Ez = CJ`(pr)(A sin `φ+B cos `φ)e±γz . (15)

Applying the rotation of the E- and H-field, respectively, the transverse components can be
calculated from the longitudinal component. The fields in cylindrical coordinates are

Er =
1

p2

[
γ
∂Ez
∂r
− iωµ

r

∂Hz

∂φ

]
,

Eφ =
1

p2

[
γ

r

∂Ez
∂φ

+ iωµ
∂Hz

∂r

]
,

Hr =
1

p2

[
iωε

r

∂Ez
∂φ

+ γ
∂Hz

∂r

]
, and

Hφ =
1

p2

[
−iωε∂Ez

∂r
+
γ

r

∂Hz

∂φ

]
. (16)

3



Analogously to the cylindrical case, the field equations for a rectangular cavity can be derived
following the procedure given above using the Cartesian coordinates.

2.1 TM Mode
For the transverse magnetic mode the z-component of the magnetic field is zero, i. e. Hz = 0.
From equation (16) follows that the components Er, Eφ, Hr und Hφ do only depend on Ez.
The longitudinal component of the E-field vanishes at the cavity walls. Hence, the boundary
boundary condition

Ez(r = R) = 0 (17)

holds, where R is the radius of the cylindrical cavity. The electric field is zero if

J`(p`mR) = J`(Y`m) = 0 . (18)

Them-th zero of the Bessel function is denoted by Y`m. Values for the zeros of Bessel functions
are found in the literature, e.g. [5]. From this, the following TM`m modes result:

Ez = C`J`

(
Y`m

r

R

)
cos(`φ) e±γz . (19)

The transversal components are

Er = − γR
Y`m

C`J
′
`

(
Y`m

r

R

)
cos(`φ)e±γz ,

Eφ =
γ`R2

Y 2
`mr

C`J`

(
Y`m

r

R

)
sin(`φ)e±γz ,

Hr =
iωε

γ
Eφ , and

Hφ =
−iωε
γ

Er . (20)

If the cavity is closed (terminated with a conducting wall at each end), the general solution
consist of a forward and backward traveling wave:

Ez =
[
Aeγz +Be−γz

]
J`

(
Y`m

r

R

)
cos(`φ) . (21)

For lossless media γ = iβ. As the transversal electric field has to vanish at z = 0 und z = L, the
constants A, B, and γ are chosen such that a sin nπz

L
function in z-direction results. With help

of the relations β = nπ
L

and k2
`mn = p2

`m + β2, the resonance frequency of a lossless cylindrical
cavity can be determined by:

f`mn =
c

2

√(
Y`m
πR

)2

+
(n
L

)2

. (22)

Please note: The z-dependence of Er and Eφ is sin γz as shown above. As Et results from the
derivation of Ez with respect to z, the component Ez includes a cos βz term. The maxima of
the magnetic field are π

2
phase shifted and have a cos βz dependence.
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2.2 TE Mode

For this mode the longitudinal electric field is zero Ez = 0. The boundary conditions for the TE
mode is:

∂Hz

∂r

∣∣∣∣
r=R

= 0 , (23)

which leads to
J ′`(p`mR) = J ′`(Y

′
`m) = 0 , (24)

analogously to the TM mode. This condition is required to make the tangential Eθ vanish at the
walls of the resonator. The field components are

Hz = CJ`

(
Y ′`m

r

R

)
cos(`φ)e±γz ,

Er =
iωµ`R2

Y ′2`mr
CJ`

(
Y ′`m

r

R

)
sin(`φ)e±γz ,

Eφ =
iωµR

Y ′`m
CJ ′`

(
Y ′`m

r

R

)
cos(`φ)e±γz ,

Hr =
iγ

ωµ
Eφ , and

Hφ =
iγ

ωµ
Er . (25)

The resonance frequency can be determined with (22), but here, the zero of the first derivation
of the Bessel function Y ′`m has to be applied. As the lines of the magnetic field have to be closed
inside the cavity, Hz possesses a sin βz dependence. The z-dependence of Eφ, Er, Hφ and Hr

is the same as for the TM mode.

3 Permittivity Measurement of Dielectric Slabs

The measurements in this experiment are carried out by means of a vector network analyzer
(VNA) connected to a cylindrical cavity with an adjustable length. The measurement setup is
illustrated in Fig. 1. Only the TE`mn modes are considered in this configuration. We measure
the magnitude of the transmission coefficient in the decibel scale as a function of frequency
between the two ports of the cavity resonator. Fig. 2 shows an example measurement of the
TE211 mode resonance at a frequency of 10.5 GHz in an empty cylindrical cavity with a radius
R = 20 mm and length L = 20.09 mm.

The resonance frequency of a resonant mode changes when a dielectric slab is inserted into
the cavity. The dielectric properties of the inserted slab can be extracted from this frequency
shift. Alternatively, we may adjust the cavity length in order to keep the resonance frequency
unchanged, and use the length difference information to determine the dielectric properties. The
cavity resonator with a dielectric slab are illustrated in Fig. 3. In the following, two methods
for computing the permittivity of the slab are introduced: the perturbation theory as well as the
exact solution of the modified boundary value problem.
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Figure 1: Experimental setup of the cylindrical resonator connected to a vector network ana-
lyzer.

6



-50

-45

-40

-35

-30

-25

-20

-15

-10

-30

1

Base Pwr 0 dBmCh1 Base Freq Start 10.48 GHz Stop 10.52 GHz

Trc1 S21 dB Mag 5 dB / Ref -30 dB

• M1 10.499900 GHz -21.455 dBS21

M1

Figure 2: Microwave transmission of a cylindrical resonator using the dB-scale (5 dB per hori-
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3.1 Perturbation Theory
The perturbation theory represents an approximation to the real solution. By changing the
permittivity of the (non-magnetic) filling material of the cavity from ε by ∆ε, the resonant
frequency is changed according to the equation

f − f0

f
=

∆f

f
= −

∫
V

∆εE · E∗0 dV∫
V

εE · E∗0 + µH ·H∗0 dV
, (26)

where E0 is the field of the empty cavity and E is the electric field of the filled cavity [6]. When
the amount of inserted material is small (i.e. the dielectric slab is thin), the perturbed field can be
approximated by the original field. Moreover, in case of resonances, the magnetic and electric
energy are equal. Hence, (26) may be written as

f − f0

f
=

∆f

f
≈ −

∫
V

∆ε|E0|2 dV

2
∫
V

ε|E0|2 dV
= −

∫
V1

∆ε|E0|2 dV1 +

=0︷ ︸︸ ︷∫
V2

∆ε|E0|2 dV2

2
∫
V

ε|E0|2 dV
, (27)

where the total volume V is split into portions V1 and V2 corresponding to the dielectric slab and
the remaining cavity, respectively. As the material changes only in the volume V1, the second
integral associated with V2 is zero.

3.2 Exact Solution
The propagation constant of a TE`mn mode in the z-direction in an empty resonator with a
length L0 and a radius R can be obtained from (22):

β0 =
√
µ0ε0ω2 − k2

c =
nπ

L0

, (28)

where the cutoff constant is

kc =
Y ′`m
R

. (29)

The same TE`mn mode can also be excited in the dielectric slab with a thickness d. The propa-
gation constant in this case is

β1 =
√
µ0ε0εrω2 − k2

c , (30)

where εr is the relative permittivity of the sample. The boundary conditions at the interface
between the sample and the empty cavity at z = d require that the tangential components of E
and H are continuous:

β1H1 cos(β1d) = β0H0 cos(β0d+ ∆φ) , (31)
H1 sin(β1d) = H0 sin(β0d+ ∆φ) , (32)

where H0 and H1 are the magnetic field amplitudes in the z-direction in the cavity and in the
sample, respectively. The phase difference ∆φ can be determined from the change of the cavity
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length ∆L = L0 − L1 that is needed in order to obtain the same resonance frequency as before
the insertion of the sample:

∆φ = β0∆L = β0(L0 − L1) . (33)

Using (31) and (33), one obtains a transcendental equation for the unknown x = β1d

tanx

x
=

tan (β0 (d+ ∆L))

β0d
, (34)

where the value for the expression on the right-hand side can be obtained by measurements.
From (34), one can determine β1 and with (30) one obtains εr.

4 Exercises

4.1 Preliminary Discussion
Please be prepared to discuss the following topics during the the preliminary discussion:

1. microwaves as a part of the electromagnetic spectrum,

2. the relationship between the wavelength and frequency in a dielectric material,

3. permittivity and permeability,

4. waveguides and waveguide modes,

5. waveguide resonators,

6. the measurement setup and procedure.

4.2 Measurements
It is recommended that the exercises 1 and 2 are completed before starting the measurements.

1. Determine the relation between ∆f
f

and ∆L
L0

with help of (22) such that εr for TE modes is
a function of ∆L

L0
according to (26). The following steps have to be carried out:

(a) Insert L0 + ∆L and L0 into (22) and formulate an expression for (f(L0 + ∆L) −
f(L0))/f(L0). Now ∆f/f0 depends on ∆L/L0.

(b) Simplify the expression and neglect the quadratic terms of ∆L.

(c) Use the Taylor expansion of 1/(1+x) and remove the terms with quadratic or higher
exponents. Which center point would make sense?

(d) In order to obtain a linear relation between ∆L and ∆f use the first order Taylor
expansion of

√
1− x.

(e) Substitute the resulting expression into (27) and use cylindrical coordinates to cal-
culate the integrals. Calculate |E0|2 using the expression ErE

∗
r + EφE

∗
φ and the

field components given by (25). Please note that a standing wave is considered. The
z-dependence is determined by the vanishing field at z = 0 und z = L0.
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2. Compute the theoretical resonance frequencies of all modes in the frequency range 7–
13 GHz for the cavity lengths of 30 mm, 40 mm and 60 mm.

3. Measure all resonances in the frequency range 7–13 GHz for the cavity lengths of 30 mm,
40 mm and 60 mm. Identify the associated modes and give a reason for non-appearing
modes (see Appendix D).

4. Using the same cavity lengths, measure the frequency shift of the resonances of the modes
TE011, TE211, and TE212 caused by the insertion of a sample into the cavity. Derive
the permittivities of several samples by applying the perturbation theory and the exact
solution.

5. Measure the lengths of the empty cavity L0 so that the resonances of the modes TE011,
TE211, and TE212 reside at a specific frequency in the range 9.4 GHz . . . 9.5 GHz. Fill
the cavity with a sample and repeat the measurements to determine L1 for each of the
three modes. Compute εr of different samples using the perturbation theory and the exact
solution.

6. Compute the quality factors

Q =
fr

BW−3dB

, (35)

where fr is the resonance frequency andBW−3dB the full width at half maximum (FWHM)
of the resonance peaks, for the resonances obtained in the previous step. What is the
meaning of the quality factor?

7. Identify and discuss sources of measurement uncertainty and perform an uncertainty anal-
ysis for each measurement. Which source is the most important one?

8. Compare the results obtained using different methods: frequency shift vs. change of
cavity length, different modes, different cavity lengths, perturbation theory vs. exact
solution and so on. Compare your results with reference values from the literature.

5 Instructions

5.1 Using the Vector Network Analyzer
Power on/off: Switch on the VNA units from bottom to top (the topmost unit ”85060C Elec-

tronic Calibration Unit” may remain switched off). Switch off the units in the reverse
order.

Set frequency range: VNA - Stimulus - Start/Stop - Enter frequency with keypad - Select unit
(G for GHz)

Set frequency resolution: VNA - Stimulus - Menu - Number of points (801 points recom-
mended)

Averaging on/off: VNA - Response - Menu - Averaging on/off
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Add marker: VNA - Menus - Marker - Select marker number (move the marker with the rotary
knob)

Find peak: VNA - Menus - Marker - More - Market to target - Maximum

Restore default settings: VNA - Instrument state - Preset (ignore the displayed warning)

Save data to computer: Computer - Desktop - Icon ”S21” - Enter filename without extension
(txt-extension will be added automatically)

Location of saved data: Computer - Desktop - Folder ”resonator data”

File format (columnwise): f [GHz], Amplitude [dB], Phase [deg] (phase is not needed in this
exercise)

5.2 Miscellaneous Notes
• The probe thickness d can be measured with a micrometer.

• There is an offset Loffset = L−Lscale = 13.0± 0.2 mm between the actual cavity length
and the value read from the micrometer scale of the resonator.

• When performing broadband measurements, be aware of the limited frequency resolution
of the vector network analyzer.

• Show plots of the measurements in your report to illustrate how the data analysis was per-
formed. Use of Matlab, Octave, or similar software for data processing is recommended.

• Prefer books and articles over websites when giving literature references.

• Handle the vector network analyzer and the cables with great care.

• Eating or drinking in the laboratory is not allowed.
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A Field lines in a cylindrical waveguide
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B Electric Field amplitudes in a cylindrical waveguide
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C Bessel Functions
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D Resonant mode chart for a cylindrical cavity
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