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0 Introduction

The aim of this experimental exercise is to measure the heat conductivity of copper using Ångström's
method. This is carried out by periodically heating a copper rod with steam and cooling it with
water. The resulting temperature pro�le along the rod is used for deriving the thermal conductivity of
copper, which requires a sophisticated mathematical solution for an equation with partial derivatives
using Fourier analysis.

In the �rst part of these instructions, the necessary background theory is described. This consists
of a short description of the di�erent types of simple partial di�erential equations, followed by the
derivation of the heat equation, and a description of Angström's method.
The second part contains the experimental design, the required equipment, and information about the
measuring procedure.
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1 Theory

1.1 Overview of simple partial di�erential equations

A system with �nite degrees of freedom (e.g. planetary system) is described by one or an endless num-
ber of functions of a variable (time, t). The equations of motion are ordinary di�erential equations, or
systems of ordinary di�erential equations. To �nd the general solution for those equations, you also
need the initial conditions.

A continuous system (e.g. homogeneous medium, string) is described by a function of several variables
(e.g. x, y, z, t). The laws of nature appear in the form of partial di�erential equations, i.e. equations
that combine the partial derivatives according to various of the variables x, y, z, t. In addition to the
initial conditions, you also need boundary conditions if the spatial area is limited.

In contrast to the usual di�erential equations, a complete theory of partial di�erential equations does
not (yet) exist. For physics and technology, certain linear partial di�erential equations - mostly of
second order - are of particular importance.

A distinction is made between homogeneous linear partial di�erential equations, e.g.:

∂u
∂t = a2∆u Heat equation (1)

where u(x, y, z, t) is the temperature of a homogeneous medium,

∂2u
∂t2 = c2 ∂

2u
∂x2 String equation (2)

where u(x, y, z, t) is the de�ection of a vibrating string �xed at the ends,

∆u = 0 Laplace′s equation (potential theory) (3)

where u(x, y, z, t) is the potential in a vacuum between individual charges or stationary temperat-
ure distribution,

and inhomogeneous linear partial di�erential equations, e.g.:

∆u = f Poisson′s equation (potential theory) (4)

where f is a given function, independent of u.

Similarly, there are homogeneous initial or boundary conditions, e.g.:

u(x, t) = u(x+ L, t) (5)

and inhomogeneous boundary conditions:

u(x, t) = f(x) (x ∈ B) (6)
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The set of solutions of a linear partial di�erential equation is obtained in the following way: First,
one looks for the solutions of the homogeneous linear partial di�erential equation. These functions
u(x, t) must also ful�l the homogeneous ones under the given constraints. With the method of separ-
ating the variables:

un(x, t) = X(x) · T (t) (7)

i.e. the given homogeneous linear partial di�erential equation can be transformed into a system
of ordinary di�erential equations for the functions X(x) and T (t). Then one attempts, by suitable
superposition of the basic solutions, to obtain a function u that also satis�es the inhomogeneous
constraints:

u =
∑∞
n=0 anun (an ∈ R) (8)
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1.2 The heat equation

We here consider a rigid, isotropic and homogeneous heat conductor.

Terms:

c : specific heat capacity (for rigid bodies, cp ≈ cv)
ρ : density
t : time
Q : amount of heat

W (x, y, z, t) : heat flux density vector
U(x, y, z, t) : temperature

The heat �ux from an in�nitesimal space element dτ of mass dm is equal to the decrease in the
heat content of dt:

∇ ·
−→
Wdt = −∂Q

∂t
(9)

Every heat dissipation corresponds to a decrease in temperature:

dQ = cdm du = cρdτ du (10)

inserted in Eq. 9:

∇ ·
−→
Wdτ = −cρ∂u

∂t
dτ (11)

The law of heat conduction, also known as Fourier's law, states that the rate of heat transfer
through a material is proportional to the negative gradient in the temperature:

−→
W = −k∇u (12)

where k is the thermal conductivity.
From Eq. 11, one obtains:

−k∇u = −cρ∂u
∂t

(13)

∂u

∂t
= K∆u (14)

where:

K =
k

cρ
(15)

is the thermal di�usivity.

The heat conduction equation is a parabolic di�erential equation that also applies to other (com-
pensation) processes such as di�usion, �uid friction, and electricity.
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1.3 The heat conduction equation for a rod with radiation loss

Analogous to Eq. 9, the following applies:

S dσ +∇ ·
−→
Wdτ = −∂Q

∂t
(16)

the term S dσ taking the radiation loss on the surface of the rod into account.
S : radiation loss per surface unit dσ and time dt
dσ : surface element of the spatial element dτ

A linear relationship between S and u is assumed:

S = h · u (17)

where h is a measure of the radiation capacity of the surface.
The ambient temperature of the rod must now be de�ned, as the `point zero' temperature, since S
must disappear as soon as the rod element dτ has the same temperature as the surroundings.

If one transforms Eq. 16 analogously to Eq. 9, one obtains:

h · udσ − k∆udτ = −cρ∂u
∂t

dτ (18)

And with the substitutions:

dσ = p dx (surface unit : p is the circumference of the rod) (19)

dτ = q dx (space unit : q is the crosssection of the rod) (20)

−∆u = ∂2u
∂x2 (as 1 dimentional :u = u(x, t)) (21)

one can derive the following:

h · u pdx− k ∂
2u
∂x2 q dx = −cρ∂u∂t q dx ⇔

δu
δt =

k

cρ︸︷︷︸ δ2u
δx2−

h p

cρq︸︷︷︸ u ⇔

K H

∂u

∂t
= K

∂2u

∂x2
−H u (22)

5



1.4 Ångström's method

With this experimental method, one end of the rod is alternately heated and cooled with a period t
until a periodic temperature pro�le is established in the rod.

The temperature pro�le at the three points x0, x1, x2, are as follows:

For obvious reasons, it can be seen that with increasing distance from the hollow cylinder:
(a) the amplitude of the temperature �uctuations become smaller (reason?).
(b) the temperature changes are delayed (reason?).

The temperature (as a function of time) at two di�erent points, x1 and x2, on the rod can be
determined. First, the temperature, u(x, t), has to be represented as a Fourier series. A Fourier ana-
lysis of the measured temperature gives the values for the amplitudes and phases of the individual
Fourier terms. With the amplitude ratios and phase shifts of the respective Fourier terms from the
two di�erent measurement points, x1 and x2, the thermal conductivity k can be determined.

The periodic excitation function f(t) at the end of the rod (at x0) expands into a Fourier series:

f(t) =

∞∑
n=−∞

cneinωt (23)
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where
ω =

2π

T
(24)

and cn is complex.
For the temperature along the rod, the corresponding series is used:

u(x, t) =

∞∑
n=−∞

cnun(x)einωt (25)

Each part of this series must individually satisfy the heat conduction equation Eq. 22. Because:

∂2un
∂t2

= inωun (26)

becomes:

∂2un
∂x2

= λ2nun (27)

with

λ2n =
H + inω

K
(28)

The only physically meaningful solution to Eq. 27 is:

un(x) = e−λnx (29)

As:

λn = αn + iβn (30)

then Eq. 25 becomes:

u(x, t) =

∞∑
n=−∞

cn e−αnx ei(nωt−βnx) (31)

(Note: the same result would have been obtained if one had used the method of separating the
variables with subsequent superposition).

With the coe�cients αn and βn, the thermal conductivity can in principle be determined. From
the two de�nitions Eq. 28 and 30 for λn one �nds:

λ2n = α2
n + 2ianβn − β2

n =
H

K
+ i

nω

K
(32)

It follows from:

β0 = 0, α0 =

√
H

K
(33)

α2
n − β2

n =
H

K
(34)

αnβn =
nω

2K
=

nπ

KT
(35)

using Eq. 24. With Eq. 15 one gets:

k =
nπcp

αnβnT
(k > 0) (36)

Eq. 31 is now transformed in order to determine values for αn, βn from the Fourier analysis.

From a Eq. 34 and 35, one �nds that:
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αn =

√√
n2π2

K2T 2
+

H2

4K2
+

H

2K
(37)

βn =

√√
n2π2

K2T 2
+

H2

4K2
− H

2K
(38)

because of αn, βn ≥ 0 it follows from Eq. 36 that n ≥ 0.With cn = ane
iγn , Eq. 31 then becomes:

u(x, t) =

∞∑
n=−∞

ane−αnxei(nωt−βnx+γn) (39)

Using Euler's equation, eiθ = cosθ + i sinθ, Eq. 39 becomes:

u(x, t) = a0e−
√

H
K x +

∞∑
n=−∞

ane−αnx

[
cos

(
2πn

T
t− βnx+ γn

)
+ i sin

(
2πn

T
t− βnx+ γn

)]
(40)

and for only the real part:

u(x, t) = a0e−
√

H
K x +

∑∞
n=−∞ ane−αnx︸ ︷︷ ︸ cos

(
2πn
T t −βnx+ γn︸ ︷︷ ︸

)
amplitude phase

(41)

As Eq. 41 shows, every Fourier term has an amplitude, ane−αnx, and a phase, −βnx + γn, which
contain αn, βn.

The temperature curve over time is measured at two points, x1 = x′ and x2 = x′′ (with l distance
between them), of the rod, where:

x′′ = x′ + l (42)

These two data sets are used in the Fourier analyses as temperature values, u(x′, t) or u(x”, t), and
time values (which exactly correspond to one period) The values from the Fourier analyses gives the
amplitudes and phases from the Fourier terms:

Amplitude : b′n = ane−αnx
′

b′′n = ane−αnx
′′

(43)

Phase : φ′n = −βnx′ + γn φ′′n = −βnx′′ + γn (44)

From Eq. 43 one can �nd the ratio of amplitudes using Eq. 42:

bn
b′n

= e−αnle−An (45)

where:An = ln
(
bn
b′n

)
= αnl. From Eq. 44 with 41 the phase shift ∆φn and thereby βn results in:

∆φn = φ′n − φ′′n = βnl (46)

Solved for respective αn or β, and inserted in 36, one gets the thermal conductivity with the
amplitude ratios 45 and phase shifts 46 from the Fourier analyses:

k =
nπcρl2

An∆φT
(47)
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2 The experiment: Ångström's method

2.1 Experimental setup
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2.2 Calibration of the thermocouples

2.2.1 Measurement equipment

A. Thermocouples Iron-constan thermocouples are used to measure the temperature of the rod.
The Seebeck e�ect applies for the thermocouple; if two wires made of di�erent metals are soldered
together at both ends, a thermoelectric voltage Utherm, can be measured on an interposed voltmeter, so
that the two soldering points are brought to di�erent temperatures (u and u0). For small temperature
di�erences the following approximation applies:

Utherm = a(u− u0) + b(u− u0)2 (48)

The quantity

η =
∂Uterm
∂u

= a+ 2b (u− u0) (49)

is called the sensitivity or thermal force of the thermocouple. For not too large temperature
intervals, then b ≈ 0, i.e.

η ≈ a (50)

Utherm ≈ a (u− u0) (51)

The thermoelectric voltage is therefore proportional to the temperature di�erence. The following
applies to an iron-constan thermocouple:

a = 53 · 10−6 V/oC (a < 300 oC) (52)

B. Ampli�er The measured thermal voltage is small and must therefore be ampli�ed in order to
read out the voltage outputs. The ampli�er has two inputs for the thermocouples, and is connected
to the oscilloscope.

C. Oscilloscope The oscilloscope is used to read out the voltage signal received from the thermo-
couples as it varies over time. The screen of the oscilloscope can be adjusted both vertically and
horizontally, so that one can zoom in and out on the voltage signal. The trigger is useful to focus
the display on the expected signal. The cursors can thereafter be used to read the signal values (as
amplitude and phase).

2.2.2 Measurement procedure
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In order to �nd the linear relationship between
u and Utherm described in Eq. 51, one compares
the temperature measured with a thermal mer-
cury thermometer with the measured voltage ex-
cursion from a thermocouple.

As shown in the drawing, one holds the mer-
cury thermometer and the soldering point of the
loaded thermocouples as close together as pos-
sible in a vessel with water. This is now brought
to the boil, making sure that the soldering point
in the air (by the handle) is isolated from the
water vapour. With a su�cient number of tem-
perature readings (e.i. every 5 degrees), the as-
sociated voltage excursion of the thermocouples
is measured by switching from one thermocouple
to the other, both during heating and cooling.

Now the temperature is plotted against the
voltage (in any recorder units A), and a linear
calibration curve can be drawn through the re-
corded points:

u(A) = b+ c ·A (53)

in oC.
With this method, one does not need to know the exact ampli�cation, linearity, etc. of the voltage

ampli�er and recorder. The reference temperature u0 is measured, also by the handles of the thermo-
couples in the air, and is contained in b, as can be seen from Eq. 51 and 53.
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2.3 Measurement of the thermal conductivity of copper using Ångström's
method

2.3.1 Measurement setup

One end of the copper rod is in a hollow cylinder and is screwed tight with a gasket. Through the
hollow cylinder, one can conduct steam from a steam boiler or cooling water by means of the shut-o�
valve. The copper rod (diameter) has four holes for the thermocouples.

The thermocouples can be placed in di�erent con�gurations in the holes (in the �gure they are in
the two middle holes).

2.3.2 Measurement procedure

The end of the copper rod is heated and cooled periodically (exactly ½ period steam, ½ period cooling
water). Reasonable period lengths are about T = 240 s (2 min steam, 2 min water) or T = 360 s (3
min steam, 3 min water). When the signal reaches (temperature) equilibrium (after approx. 6 periods
or more until the curve becomes regular) the temperature pro�le is recorded at both measuring points
simultaneously.

12



3 Exercises

As the present experiment "heat conduction" focuses less on the physical measurement than on the
mathematical evaluation, it is particularly important that the theory is well understood. Therefore,
the following exercise must be solved before the start of measurements:

� Solve the heat conduction equation 22 with the method of separating the variables and show
that equation 31 is obtained by suitable substitutions.

The following measurements must be carried out:

� A calibration curve is to be recorded from the two provided thermocouples, and the linearity
u(A) = b + cA is to be shown in the �nal report. The coe�cients b and c are to be determined
(linear regression).

� The temperature pro�le should be recorded at two points using the two thermocouples in the
holes in the copper rod during one full period (exactly ½ period steam, ½ period cooling water).
Two measurements are made:
a) with the thick rod (T = 360 sec)
b) with the thin rod (T = 240 sec)

For the evaluation:

� Make a Fourier analysis of the periodic functions obtained and determine the coe�cient of thermal
conductivity k. Think about how many harmonics you should take into account and try to
estimate the error. The evaluation can either be done by hand (quite laborious) or carried out
with a program.
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