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Chapter 1

Introduction

The experiments we are going to briefly describe in this introductory chapter were
mostly performed at the end of the 19th century and represented a challenge to
the physicists of that time because an interpretation of them in the framework of
classical physics did not seem to be possible — and indeed it wasn’t. After many
small steps in the right direction and ad hoc intepretations, the solution of all
the puzzles was provided by the formulation of Quantum Mechanics. Surprisingly
(or maybe not, see later), the laws of Nature take a different form if one makes
experiments which probe matter at microscopic, atomic scales. Actually, once we
have established what the microscopic laws of Nature are, we have to conclude
that these are the truly fundamental ones, whereas those of classical mechanics are
approximate versions of the quantum laws, valid only in the limit of macroscopic
bodies. The fact that depending on the size of a physical system the quantum laws
get simplified into the classical ones means that we can define what is “big” and
what is “small” in absolute terms. This fact is related to the existence in Nature
of a fundamental, dimensional constant, the Planck constant h = 6.63-1073* J s.

For example, in quantum mechanics angular momentum is quantized and can
only take values equal to multiples of h/2 (A = h/2m). If one has to deal with
a system whose typical size of angular momentum is orders of magnitude larger
than A, then it is understandable that he will not notice that angular momentum
is quantized and will treat it as a quantity which can vary continuously, as in
classical mechanics. The Planck constant is not the only dimensional fundamental
constant of Nature: another one is ¢, the velocity of light and of any other
massless particle. In fact it is the maximal velocity allowed in Nature. The
existence of this constant implies that we can define in absolute terms whether a
velocity is big or small. If we deal with small velocities, then we can take certain
approximations (which again correspond to the classical mechanics) and forget
about the special theory of relativity. The third fundamental constant of Nature
is Newton’s gravitational constant G. If you are intrigued by the concept of
fundamental dimensional costants in Nature and by the fact that they define big
and small in absolute terms, I suggest you to read Ref. [1]. Three well known
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6 CHAPTER 1. INTRODUCTION

physicists present their different views on this subject and claim that the number
of fundamental dimensional constants in Nature is a) three, b) two, c¢) zero'.
From what I wrote is clear that I symphatize with answer a), but you may end
up with a different answer after reading this paper.

One of the founders of quantum mechanics, P.A.M. Dirac writes in the intro-

duction of his book that a change in the laws of Nature that would allow us to
define big and small in absolute terms is to be expected. He writes [2]:
“The necessity to depart from classical ideas when one wishes to account for the
ultimate structure of matter may be seen, not only from experimentally estab-
lished facts, but also from general philosophical grounds. In a classical explana-
tion of the constitution of matter, one would assume it to be made up of a large
number of small constituent parts and one would postulate laws for the behaviour
of these parts, from which the laws of the matter in bulk could be deduced. This
would not complete the explanation, however, since the question of the structure
and stability of the constituent parts is left untouched. To go into this question,
it becomes necessary to postulate that each constituent part is itself made up of
smaller parts, in terms of which its behaviour is to be explained. There is clearly
no end to this procedure, so that one can never arrive at the ultimate structure
of matter on these lines. So long as big and small are merely relative concepts, it
is of no help to explain the big in terms of the small. It is therefore necessary to
modify classical ideas in such a way as to give meaning to size.”

In closing this introduction I will also warn you (as many books and lecture
notes on quantum mechanics do), that because we are macroscopic bodies and
have experience of the physics of other macroscopic bodies, we have developed
an intuition (at least some) for classical physics and not for quantum mechan-
ics. Understanding quantum mechanics is therefore difficult — some very famous
physicists claim that nobody truly understands it and the best you can hope is
to be able to use it. This is by no means meant to discourage you: trying to
understand it is a wonderful challenge on which you should not give up. Still,
you should first learn how to use it, and for this I hope that these notes will be
helpful.

In the rest of this introduction I will discuss a few of the crucial experiments
which paved the way to the formulation of quantum mechanics: first those which
showed that light consists of single quanta, called photons, which behave like
particles and then a Gedankenexperiment which shows that electrons behave like
waves, like light.

L At a summer school some years ago I heard C. Tsallis argue that the number of fundamental
constants is actually four, the fourth being Boltzmann’s constant. Unfortunately I do not have
a reference where you can read arguments in favour of this point of view
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1.1 Black body radiation

Let us consider a cavity in thermal equilibrium, at a certain temperature 7. The
walls of the cavity will absorb and emit radiation with a certain probability which
depends on the temperature. Inside the cavity there are photons in thermal
equilibrium and the energy density of photons of frequency v depends on the
temperature — it will be given by a function u(v,T). This energy density can be
measured if one looks at the radiation coming out of a little hole in the cavity.
It can be shown that the emissive power (energy emitted per frequency per unit
area, per unit time) of this cavity is directly proportional to the energy density
u(v, T). Measurements and theoretical work on the properties of the black body
radiation were performed at the end of the 19th century.

In 1894 Wien showed that the energy density divided by the cube of the
temperature had to be a function of one variable only, v/T":

“<;’3T> —f <%) , (1.1.1)

as was confirmed by measurements. With the help of a model he then predicted
the form of the function to be

u(v, T) = Crie /T . (1.1.2)

This function has two free parameters, and by appropriately adjusting these,
would indeed reproduce the measurements of the function u, but only as far as
the high frequency part of the spectrum was concerned. In 1900 Rayleigh showed
that classical physics arguments required an energy distribution of the form (this
formula goes under the name of Rayleigh-Jeans law, after Jeans corrected a minor
mistake in Rayleigh’s original formula)

82

u(y,T) = 3

kpT (1.1.3)

where kp = 1.38-1072% J /K is Boltzmann’s constant. What goes into this formula
is the density of modes of frequency v, which is equal to 871?/c as we will see
below, and the average energy of each mode, which is taken to be equal to kgT.
Such a formula cannot be correct at high frequencies, because the quadratic
dependence on the frequency prevents the integral over all frequencies (giving
the total energy contained in the cavity) from converging. On the other hand it
described the low frequency part of the spectrum quite well.

In 1900 Planck proposed a formula which interpolated between the successful
formula at low and at high frequencies, namely

&1h V3

u(,T) = B ehvfksT _ 1

(1.1.4)




8 CHAPTER 1. INTRODUCTION

and could indeed describe the data over the whole spectrum. The only adjustable
parameter appearing in his formula, h, was determined by fitting experimental
data and later became known as the Planck constant, which we have introduced
already. Although Planck originally derived his formula as a simple interpola-
tion between two successful ones, he later provided an interpretation of it as a
distribution of photons in thermal equilibrium.

His derivation was as follows: assume that the energy associated with the
allowed modes of the electromagnetic field in the cavity could not vary contin-
uously, but had to be the multiple of a minimum energy €. Then the average
energy associated with each mode can be derived using Boltzmann’s probability
distribution®

o—E/ksT
The calculation of the average energy gives
_ 1 & €
o _ —ne/kpT __
E= ZE:EP(E) = Z%nee M= (1.1.6)

The correct result is then obtained by identifying® e = hv.

In order to get the energy density in the cavity we still have to count how
many modes of frequency v per unit volume we have. If we consider a square
cavity of finite size and assume periodic boundary conditions at the walls, the
allowed momenta for the photons are discrete

L2
i = %m (1.1.7)

where m is a vector with integer components. For every momentum we have two
possible polarization states for the photons, and so have to count every m twice.
We now consider a very large volume and instead of summing over all vectors m
we integrate over d>k. The average energy is then given by

3
By =2 (LY [aenE = 2L [rea—tY (1.1.8)
- 9 Y chv/ksT _ 1 ° -

™

Making a variable transformation from k to v = k/2mc and dividing the result
by the volume L3 we can read off the formula for the energy density u(v,T) and
see that it agrees with Planck formula (1.1.4).

2N =3 e B/keT engures that the distribution is correctly normalized.

30r € = hw if one prefers to use the angular frequency w = 27v. Warning: sometimes w is
also called “frequency” — confusion, however, does not usually arise, because the context makes
clear which one is meant.
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1.2 The photoelectric effect

In classical electrodynamics — the theory which describes the behaviour of electro-
magnetic radiation and its interaction with macroscopic bodies — moving charges
can emit or absorb electromagnetic waves. The emitted energy per unit time
depends on some continuously varying quantities, like the charge and the accel-
eration (cf. for example the Larmor formula). Macroscopic bodies can emit any
amount of energy in electromagnetic radiation. Like for angular momentum, this
statement is only an approximation which is valid when the amount of emitted
energy is “large”. If one makes experiments which are sensitive to the behaviour
of microscopic entities (like electrons) as they emit or absorb radiation, one soon
discovers that the classical picture does not hold and that radiation is absorbed
and emitted in quanta (photons). One such experiment is the one measuring the
photoelectric effect, which was discovered by Hertz in 1887: if light is shone onto
a metal, this may extract electrons out of the metal.

In order for this to happen, the electromagnetic radiation has to provide single
electrons enough energy to overcome the binding force which keeps them inside
the metal. In classical electrodynamics the energy of electromagnetic radiation is
given by the modulus squared of the fields. One would have expected that in order
to make the effect happen and then to increase the number of electrons extracted
from the metal one simply had to increase the intensity of the electromagnetic
radiation.

The surprising experimental facts which contradicted the classical expecta-
tions were the following:

1. the photoelectric effect happens if the electromagnetic radiation shone onto
the metal has a frequency which is higher than a certain threshold vy. This
threshold varies from metal to metal. If the light has a frequency smaller
than vy the effect does not take place, independently of the intensity;

2. the number of electrons extracted from the metal (photoelectrons) is pro-
portional to the intensity of the light source (provided its frequency is higher
than vp);

3. the kinetic energy of the photoelectrons is independent of the intensity of
the light source but varies linearly with the difference v — v, where v is the
frequency of the incoming light.

An explanation of all these experimental facts (in fact the latter of them
was a prediction later verified by the experiments of Millikan) was provided by
Einstein, who postulated that light of frequency v consisted of quanta, each of
which carries an energy hv. Electrons would then be able to absorb a single one
of these quanta and correspondingly increase their energy by hv. Assuming that
for each metal there is a different minimal binding energy W = huj, (also called
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work function) for the electrons contained in it, the extraction of electrons can
happen only if hv > W. The excess of energy will stay with the electron in form

of kinetic energy:

1
§mev2 =hv—W =h(v—1p) .
This formula directly displays also the threshold in frequency. It is also obvious
that if the light has a high enough frequency, the higher the intensity, the higher
the number of photons which hit the metal and therefore the higher the number

of extracted electrons.

1.3 The Compton Effect

The effect discovered by Arthur H. Compton in 1923 also showed unmistakably
that radiation in certain circumstances behaves like particles. He shot X rays
through a thin metallic foil and measured the scattered radiation after the foil. In
classical electrodynamics a free particle (electrons in this case — we will ignore the
binding force inside the metal) which is subject to an oscillating electromagnetic
field of frequency v, oscillates with the same frequency. In turn, a charged particle
oscillating with frequency v will emit radiation of the same frequency. This
means that the expectations based on classical physics are that the scattered
radiation after the foil would have the same frequency as the incoming radiation.
The angular dependence of the intensity of the scattered radiation can also be
calculated and reads (1 + cos?6).

The measurement of Compton showed that the outgoing radiation had both a
component with the same frequency and a component with a shifted frequency. In
order to interpret the result of his experiment, Compton assumed that radiation
consists of photons, which behave as normal particles. The energy of a photon is
hv (as already postulated by Einstein) and its momentum p = hv/c. A simple
calculation of relativistic kinematics shows that the energy of the outgoing photon
depends on the scattering angle according to the formula (we have assumed that
the electron off which the photon scatters is at rest)

/ Y (1.3.1)
vV = . 0.
1+ (1~ cosh)

mec?

1.4 The double slit experiment

The experiments we have discussed so far show that electromagnetic radiation
is actually made of quanta, photons, which behave like particles, if one looks at
them with the appropriate tool. Electrons were discovered as particles, but the
experiment we are going to discuss now shows that they also behave like waves.
We first discuss the experiment for macroscopic particles (bullets, say), then for
waves and finally for electrons.
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Figure 1.1: Schematic view of the double-slit experiment in case of bullets (left)
and waves (right).

The setup is as follows: we have a source of bullets, a gun which shoots them
in a certain direction but not quite precisely, so that each shot comes out with a
random angle around the central direction. At a certain distance from the source
we have a screen, a wall which stops the bullets. The wall has two slits, and
behind it we have a second wall where we can place our detectors, which tell us
where the bullets have hit the wall. The setup is schematically drawn on Fig. 1.1.
Note that not only the bullets which can go exactly through the slits will hit the
second wall (this would mean that all bullets would concentrate in a very small
spot). We assume that the borders of the slit will deflect the bullets which hit
them: as a consequence the distribution of the bullets on the second wall will be
rather broad. We can do the experiment and measure how many bullets hit the
wall at a distance y from the center, first keeping slit 2 closed, and then slit 1
closed. The bullets going through slit 1 (2) have a distribution I;(9) which has a
maximum shifted somewhat to the right (left) with respect to the center of the
wall (y = 0), as illustrated in Fig. 1.2. If we now repeat the experiment with both
slits open, the outcome is shown on the right panel of Fig. 1.2 and is simply the
sum of the two distributions. Actually we do not need to first close one slit at
the time and then open both of them: if we do directly the experiment with both
slits open, we can simply check through which slit each bullet goes, and measure
at once both distributions. If we do things this way it is then obvious that the
distribution /15 that we measure with both slits open is

112211—{—[2 .
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Figure 1.2: Distribution of the bullets going through slit 1 or 2 (left), and total
distribution (right). The latter is the sum of the two.

There is another rather obvious remark to be made at this point. Each bullet
goes through slit 1 or 2 and hits the wall only at one place. In other words, if
we cover the wall with detectors, it will hit only one of them, while all the others
will give no signal. This is how particles behave: they are in a well defined point
in space at any time.

If we arrange a similar experiment with waves, the situation and the results
will be rather different as illustrated schematically in Fig. 1.1. A wave is a
nonlocal object and for none of the questions we already asked for bullets we get
a sharp, yes-or-no kind of answer. For example when a wave hits the first wall
it does get stopped by the wall, but only in part. In part it goes through slit
1 and in part through slit 2. If we then want to measure where the wave hits
the second wall, we have first to formulate the question differently, because the
wave hits the wall everywhere. One way to ask the question, for example, is how
much energy is carried by the wave at each point where it reaches the wall. If the
amplitude of the wave is ¢, the energy is proportional to |¢|?, and so to answer
the question we need a detector that measures |¢|?.

Each of the two slits acts as a source of a spherical wave. The amplitudes of
the two waves have the form

¢i(Z,t) = A(r;)e’*rim) (1.4.1)

where k = 27/\ is the wave vector, r; = |Z — 7| the distance from the center of
the slit #;, and w = kv the angular frequency, with v the velocity of the wave. If
we measure how much energy is deposited on the wall as a function of y and open
the two slits one at a time, we will find a shape similar to the one observed for
the bullets, cf. Fig. 1.2 — the exact form being given by |A(r;)|* (on the second
wall, 7; is a function of y only). The big difference among bullets and waves will
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Figure 1.3: Distribution of the energy of the waves as they arrive on the wall
when both slits are open, compared to the distribution of bullets in the same
case.

be apparent as we open both slits and measure the energy which arrives on the
wall. In this case we get:

2

Lo(y) = |1+ ¢af* = [A(ry)? 1+%eik(mn)

A |14 e (1.4.2)

where in the last step we have neglected the different size of A(ry) and A(rs).
A plot of this distribution (for a certain value of k) is shown in Fig. 1.3 and
compared to the same distribution in case of bullets. The new feature is the
appearance of several maxima and minima which are higher or lower than the
sum of the two intensities. The maxima occur when k(ry — r;) = 27n and the
minima when k(ro—7r1) = (2n+1)7. Translated in a condition on the wavelength,
one sees more than just one maximum provided the wavelength is smaller than
twice the distance between the two slits: A < 2a. The presence of both waves
implies an interference among them — in this case the energy is distributed very
differently from the energy distribution of each of them and of the sum. This
shows the different nature of particles and waves: if a particle which goes through
slit 1 hits the wall in a certain place, it does not care whether at the same time
slit 2 was open or closed. For a wave this is different: a wave going through slit
1 does notice if at the same time there is another way propagating in the same
region of space, because the way in which the medium gets deformed (if we are
talking, e.g., of waves on the surface of water) changes.
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If we do the experiment with electrons?, the whole setup looks very much like
the one for bullets: an electron gun can shoot electrons one by one, and when
the electrons hit the detectors on the second wall, only one detector at a time
gives a signal. As for bullets we then expect that the electrons go either through
slit 1 or 2 and that if we do the experiment with both slits open, what we get
is the sum of the two distributions. Surprisingly, this is not true. If we count
the electrons which hit each detector and make an histogram which shows us the
distribution of the events as a function of y, we see the interference pattern just
like for waves. Clearly we are facing a contradiction because if the electrons go
through either of the two slits, keeping both slits open at the same time cannot
generate anywhere a depletion of the counts of electrons with respect to the case
when only one slit is open.

We can try to solve the contradiction experimentally and find a way to detect
which of the slits each electron went through. For example we can place a source
of light just behind the first wall and use the interaction of photons and electrons
in order to see where the electron went through. We will need to place extra
detectors sensitive to photons, that allow us to see a flash of light and identify
whether it comes from slit 1 or 2. If we do this and are indeed able to see which
slit the electrons went through something even more surprising happens: the
interference patterns disappear. This may actually not be very surprising, after
all — because this source of light has made the old experiment into a new one, and
the same things do not have to necessarily happen. Maybe this was not quite the
right thing to do. We may try next to reduce the intensity of the light so that
the electrons get disturbed less. Below a certain intensity we will realize that the
flash of light does not happen with each electron. In this case, the electrons which
are not detected at the slits do generate an interference pattern, but those which
are detected not. The total distribution is then the sum of these two components.

A second attempt may be to reduce the frequency of the light which should
detect the electrons. A photon of frequency v carries energy hr and if v is
too high so is the energy of the photon and this must disturb substantially the
electrons which get detected. As we reduce the frequency nothing really happens
and we do not see the interference patterns reappear (provided all electrons are
seen as they go through the slits) — well, unless the wavelength of the photons
becomes of the same order of a, the distance between the two slits. In this case
the photons do not allow us to identify the slit through which the electrons are
going: the resolving power of this photons is of the order of their wavelength, and
the two slits are not distinguishable by these photons. In this case the interference
patterns reappear.

One may try other ways to see the electrons go through the slits without

4This experiment has actually been carried out by a few different groups. More details can
be found in the following web pages:
http://physicsworld.com/cws/article/print/9745 and
http://www.hqrd.hitachi.co.jp/em/doubleslit.cfm .
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destroying the interference patterns, but they are all going to fail. The contra-
diction we have discussed above is a real one: if we know through which slit the
electrons go, then there cannot be interference, and indeed there isn’t. When in-
terference happens this is because we have not determined whether the electron
went through slit 1 or 2. More importantly, the contradiction would be there even
if we were not able to detect the electrons, but they would indeed go through
either slit 1 or 2. We have to conclude that if we do not detect the electrons at
the slits, they do not go either through slit 1 or 2, but in some sense through
both.

This is one of the first disturbing encounters we have with quantum mechanics,
and will probably give you a lot to think, and make you try to find alternative
explanations to these astonishing facts. Many people have tried and the only
successful explanation of this experiment is that electrons are described by wave
functions, ¥(#,t) and that the modulus squared of the wave function gives us
the probability per unit volume to find an electron in a small region around ¥
at time ¢. If I do the experiment with slit 1 (2) open, I describe the electrons
with a wave function Wy, (Z, ) and see a distribution on the second wall equal to
Ly (y) = |W1(9)(L,y, t)|?, where [, as shown in Fig. 1.1 is the distance between the
first and the second wall. If I now do the experiment with both slits open, each
electron will have the same probability to go through slit 1 as to go through slit 2
and its state will be described by the wave function ¥; +W,°. The distribution at
the second wall in this case will be given by |¥; + U, |? and will show the typical
interference pattern of waves.

Why do we not see these phenomena with macroscopic object like bullets?
If the laws of quantum mechanics are more fundamental than those of classical
mechanics, then they must be valid even for small pieces of matter — should we
not see interference patterns for them too? In order to answer this question we
can rely on the concept of de Broglie waves. He postulated that just like photons,
also particles (like electrons) behave like waves, and that their wave parameters
are related to the particle properties in the same way as for photons. A photon of
momentum p has wave vector k= p/h. According to de Broglie this is also true
for particles. If we consider a macroscopic object, say with a mass of a fraction of
a gram, which moves slowly, with a speed of a fraction of a centimeter per second,
and calculate its de Broglie wavelength, we obtain something several orders of
magnitude smaller than the size of a proton — it would be quite difficult to make
two slits separated by a distance larger but comparable to this one! In any case
the distance between the maxima and minima of the interference pattern would
be of the order of the de Broglie wavelength, and therefore undetectable. This is
the reason why we never see such phenomena with macroscopic objects.

5There is a normalization of the wave function to worry about, but we ignore it for the
moment and will discuss it in detail later.
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1.5 Quantum mechanics: timeline

We close the chapter with the quantum mechanics timeline. The reader interested
in historical aspects of the developments of this beautiful theory is referred to

the vast literature on the subject (for a compact account, see, e.g. Ref. [3]).

Year | Discoverer Event
1897 | Thomson(41) Discovery of the electron
1900 | Planck(42) Explanation of the blackbody spectrum
1905 | Einstein(26) Explanation of the photoelectric effect
1911 | Rutherford(40) Discovery of the nucleus
1913 | Bohr(28) Atomic model, angular momentum quantization
1922 | Stern(34), Gerlach(23) | Deflection of particles with angular momentum
going through a magnetic field
1923 | De Broglie(28) Particle-wave duality
1924 | Pauli(24) Formulation of the exclusion principle
1925 | Heisenberg(23) Matrix mechanics
Born(41), Jordan(22) | (further developed the theory with Heisenberg)
Uhlenbeck(25) Hypothesis of the existence of
& Goudsmit(23) intrinsic angular momentum (spin)
1926 | Schrodinger(38) Wave mechanics — formulation of his equation
Dirac(24) Formal aspects of quantum mechanics
(correspondence Poisson brackets—commutators)
1927 | Pauli Theory of spin
1928 | Dirac Relativistic quantum mechanics: Dirac equation
1932 | von Neumann(29) Axiomatization of quantum mechanics

1935

1941
1964
1982

Einstein, Podolsky(39)
& Rosen(26)

Feynman (23)

Bell (36)

Aspect (35)

EPR paradox

Path-integral formulation of quantum mechanics
Formulates his famous inequalities
Experimental proof that Bell’s inequalities

are violated

Table 1.1: Chronology of the main events which marked the developments of
quantum mechanics. The numbers in parentheses close to the names, indicate

the age of the people at the time of their discoveries.
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Chapter 2

The wave function

2.1 The Schrodinger equation

In quantum mechanics the state of a particle is fully specified by its wave function
U(z,t), which only allows us to calculate the probability to find the particle in a
given region of space, and never to answer the question “where will the particle
be at time ¢?”. This is a lot less than in classical mechanics where, in principle,
one is able to predict the position of a particle z(t) at any later time if the initial
conditions for the position x(tq) and velocity & (o) of the particle are known. As
we have seen, physicists have been forced to become infinitely less ambitious by
a number of experiments which could not be explained within classical physics —
Nature really gave us no choice.

Although less ambitious, the goal of quantum mechanics is still to predict the
future evolution of a physical system based on the knowledge of the dynamics
of that system. This is done through a differential equation which conceptually
plays the role of the Newton equation in classical mechanics. Such an equation
was first formulated by Schrodinger in 1925 and has the following form

oV h? 0*W

ih % = 90 9.2 +Vyo . (2.1.1)
Given a potential energy V', and appropriate initial conditions ¥(z,y) the so-
lution of the equation predicts the state of the system in the form of the wave
function at any time ¢ > t;. Notice that in contrast to Newton’s equation, this
is of first order, and that instead of the force, the potential energy appears — the
relation among potential energy and force is F' = —90V/0x.

2.2 A heuristic derivation

A good way to convince oneself that the Schrodinger equation is the right one
is the following. We start from the idea that particles also behave (and can

17
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therefore be described) like waves. According to De Broglie (1923) it is reason-
able to assume that the relations between energy and frequency, and momentum
and wavelength which one has established for photons should also be valid for
particles. These read:

p=— E=hv . (2.2.1)

For a nonrelativistic particle energy and momentum are also related by E =
p?/2M. This implies a relation between frequency and wavelength for particles,
which is different from the one valid for photons, v = ¢/\.

When we consider waves, we never deal with exactly monochromatic ones, but
rather have to do with a superposition of plane waves of different wavelengths.
Something of the form

flz,t) = /dk g(k) eltre=t) (2.2.2)

where w is usually a function of k (which is related to the wavelength by k = 27/))
— for photons, w = ck. The same will happen with the function describing
quantum particles, and if we use p instead of k and E instead of w, a wave
function will look like:

U(z,t) = /dp o(p) e!Pr=EO/N (2.2.3)

The nonrelativistic relation between E and p has to be required for the integrand,
because that contains the contributions of fixed momentum and energy. The
relation E = p?/2M is equivalent to the equation

_ h@‘lf RO

"ot T T 2M 022
as can be easily seen by bringing the derivatives inside the integrals in Eq. (2.2.3).
This is the Schrodinger equation for a free particle, in the absence of a potential.
If the particle of interest is submitted to a force, its energy is shifted by the
potential energy (assuming the force is not dissipative, i.e. that it can be written
as F' = —dV/dx). If we do this and add a term of the form V(z)¥(x,t) to the
right-hand side of Eq. (2.2.4), we obtain exactly the Schrédinger equation (2.1.1).

(2.2.4)

2.3 Normalization, probability

The wave function represents the probability amplitude and its modulus squared
gives the probability density — the probability to find the particle in the volume
dx around the point z at the time ¢ is given by |¥(z,t)[*dx. If we now integrate
this over a finite interval (a,b) we get

b
P(a,b):/ dz|¥(z,t)|? (2.3.1)
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the probability that an experiment will detect a particle in that interval. If we
now extend the integration limits to infinity, we must get P(—o00, 00) = 1, because
it is certain that the particle will be detected somewhere. This implies that the
functions which can represent physically meaningful solutions of the Schrodinger
equation must have a square which is integrable. Moreover, they have to be
normalized such that -
/ dz|V(z, t)* =1 . (2.3.2)
—00
Even if we restrict our search for solutions of the Schrodinger equation to functions
which have an integrable modulus squared, and choose the initial conditions
such that Eq. (2.3.2) is satisfied at ¢t = t; nothing guarantees a priori that the
normalization condition stays constant in time. If that were not the case we
would be in serious trouble, because in order to make sense of the solution of the
Schrodinger equation as a properly defined probability amplitude, we would have
to multiply it with a time-dependent normalization. The predictive power of the
Schrodinger equation would be lost.
It is therefore important to check that the normalization of any solution of
the Schrodinger equation is a constant:

d [~ 9 * ov* LoV
pr _Oodx]\IJ(a:,t)] —/ dx( Py U+ U E) . (2.3.3)

We can now use Eq. (2.1.1) substitute the time derivatives of ¥ and ¥* with the
right-hand side of the Schrodinger equation. It is easy to see that the term with
the potential energy drops out and what we are left with is

0 th 0?v 9P th 0 ov  ov*
— |V = Ur—— — U)=-—_—(U'——-——0U) . (234

8t’ | 2M ( Ox?  Ox? ) 2M Ox ( Jr  Ox ) ( )
Since the integrand is a derivative, the integral is trivial

d [ ih ov U
— v = (U—— — v
dt J_ S 2M ( or  Ox )

—0o0

o)

=0 . (2.3.5)

—0o0

The result is zero because, as we have seen, the wave function has an integrable
square modulus, and therefore has to vanish at infinity faster than z /2,

2.3.1 Probability current

In Eq. (2.3.5) we have seen that the total probability is conserved. On the other
hand, if we consider the probability to find a particle inside a given interval (a, b)
on the real axis, this changes in time. The change is given by the value of a
function (the integrand in Eq. (2.3.5)) at the two endpoints of the interval, a and

b:
d d [P , ih (.00 OQU*
%P(a, b, t) = %/a dx|‘11(x,t)| = m <\Ij 8_1‘ — ax \Ij)

b

(2.3.6)

a
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By working in one space dimension we make this relation not particularly illumi-
nating, but with a little imagination we can view the right-hand side of Eq. (2.3.6)
as the flux of a current j(z,t) through the boundaries of an interval, the current

being
ih ov  ov*
' =—— (U'— — v . 2.3.
i@.1) ( dx  Ox ) (23.7)

What requires a little imagination in the one-dimensional case is completely ob-
vious in three spatial dimensions, and to illustrate our statement that we in-
deed have found the probability current we briefly discuss the latter case. The
Schrodinger equation in three dimensions reads

ov h?
h— = ———AVU v 2.3.
ih By 5N +Vu (2.3.8)

where A = 9?2 —1—83 +0? is the Laplace operator. The probability to find a particle
inside a volume V' is then given by the volume integral

P(V,t) = / FENTCE (2.3.9)
1%
and its derivative in time is
iP(V t) = ﬁ/ dxV (VU — VU*Y) = —/ ds - J (2.3.10)
dt ’ o 2M V o aV ’ ’ ’

where J = —ih/2M (U*V¥ — VU*¥) is the probability current, now a vector, in
three dimensions. If we define the modulus square of the wave function as the
probability density, then Eq. (2.3.10) can be rewritten as

/fxv+Vmﬂ:O, (2.3.11)
|4

and since this is valid for any volume, it is the integrand which has to vanish:

-

p+V-J=0 . (2.3.12)

Eq. (2.3.12) is the continuity equation for probability in quantum mechanics and
gives sense to calling J the probability current. In one spatial dimension the

equation becomes

dp 0j
—+ == 2.3.1
5t + D 0, (2.3.13)

with j(z,t) as defined in Eq. (2.3.7), the one-dimensional probability current.
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2.4 Position

Given the state of a particle, as described by its wave function, where is its
position? As we have learned, this question does not make sense in quantum
mechanics, where one can only answer with which probability one will find the
particle in a certain position. This is, however, not the only answer that we can
get from the wave function. Since the latter provides a probability distribution,
we can define some usual quantities which characterize the latter.

The median position is the position for which the probability that the particle
is to its left is equal to the pobability that it is to its right:

Tmedian 1
/ dz|W|* = 5 (2.4.1)

—0o0

The average position, often called expectation value, is the average of the values
of = — obtained weighing each value of  with the probability distribution

<x>:/_°o doz| U (2.4.2)

o0

The average squared position (or any other power) is given by

(x") = /_00 dxa"|W]? . (2.4.3)

o0

The standard deviation o, is defined as the square root of the average of
(z — {x))* .
o= [ dwle— @) 0P = ) - () 244

[e.9]

and provides a measure of how peaked around the expectation value a distribution
is.

2.5 Velocity and momentum

The wave function tells us with what probability one finds a particle in a cer-
tain region of space as a function of time. Schrodinger’s equation prescribes the
evolution in time of this probability and tells us how fast this changes and with
which sign. Although we can speak of time evolution in quantum mechanics, it
is far from obvious whether a concept like velocity makes any sense. At the very
least we have to define what we mean by “velocity”. Let us imagine that a wave
function of a particle is rather well peaked around a certain point g at time .
At a later time ty + dt the peak will have moved a little and will be at x¢ + dx —
in this case it would be natural to take dz/dt as a measure of the velocity of this
particle. But what if the wave function is not peaked at all? Also, if we speak
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of a peak and its movement in time, what do we mean exactly? The position of
the maximum? The average value of x, the median value? We have to specify
how exactly we want to define the concept of velocity in this case, and there is
certainly more than way of doing this.

One rather natural way is to define the expectation value of the velocity as
the derivative in time of the expectation value of the position:

(v) = %’7 . (2.5.1)

Using the definition of (x) and again the Schrédinger equation we can rewrite

this as follows
) _ —/ dra O <\1/*a 0 \I/) . (2.5.2)

dt 2M Ox Or Oz

— 00

Because of the factor x in the integrand we cannot immediately solve the integral,
as we did when evaluating the time dependence of the normalization. In the
present case we can, however, apply a partial integration (the wave function goes
to zero fast enough at infinity such that x(0V*/0z¥ — ¥*0W¥/0z) also vanishes
there) to get

(v) = ih dx <\Il*a—\p _ o \Il) __hn dx\If*a—qj : (2.5.3)

oM = Ox ox M ] o ox

Having an expression for the velocity (its expectation value) we can immedi-
ately get the one for the momentum, obtained by simply multiplying the velocity

P ua /l/ . Je

—0o0

This way of writing emphasizes the similarity to the expression for the expectation
value of the position. The factor z in Eq. (2.4.2) is substituted with the derivative
with respect to x, multiplied with the factor —ih. As we will see later such an
expression is very general in quantum mechanics — the expectation value of any
physical quantity is obtained through an integral of the type Eq. (2.4.2) or (2.5.4).
What stays between brackets is the quantum mechanical representation of the
physical quantity — in general this is given by an operator in the space of the
wave functions. Indeed both z (the multiplication with) and the derivative in
x are operators on wave functions. We will formalize these concepts later, but
we can now already anticipate that, if we can write a quantity as a function of
x and p in classical mechanics, Q(z,p), the quantum mechanical representation
generalizes this function to the corresponding operators:

Or.p) = QUi 5) = Q (x —.—) , (25.5)
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where with the hat on any symbol we indicate the operator that corresponds to
the physical quantity identified by that symbol. As an example we mention the
kinetic energy which, in classical mechanics, is given by T' = p?/2M. In quantum
mechanics we then have

n* 92 I 0*U

2.6 The uncertainty principle: a qualitative dis-
cussion

Now that we have discussed how to evaluate both the expectation value as well as
the standard deviation of position and momentum, it is hard to resist to discuss at
a qualitative level what the uncertainty principle is. Quantitatively, the principle
takes the form of the following inequality

Oz0p = g : (2.6.1)
For any wave function which is a solution of the Schrodinger equation, the product
of the standard deviation of position and of momentum has to be larger than
half the reduced Planck constant. The inequality holds independently from the
specific form of the potential. Where does such a general result come from? It is
a mathematical result in the theory of Fourier transformations — the only physics
input which enters the formula and which is specific of quantum mechanics is the
relation among wavelength and momentum:

p—hk=hT (2.6.2)
A

If we substitute p with the wave vector k (or the wavelength \), then % disap-
pears from the formula and we see the purely mathematical result. This can be
explained as follows. If we look at any wave phenomenon, it is impossible to
construct a wave which has a well defined wavelength and which is at the same
time sharply localized in space. Per definition, a wave of a definite wavelength
extends everywhere in space. On the other hand, if we observe a wave which is
well localized in space, and make its Fourier transformation, i.e. we describe it
as a superposition of plane waves, we need the contribution of very many plane
waves with very different wavelengths. Such a wave has no definite wavelength —
if we evaluate the average value of the wavelength and the corresponding stan-
dard deviation, we are going to find that the latter is very large. Intuitively, it
is quite well understandable. As we will see later, one can give this discussion
full mathematical rigour and prove the inequality (2.6.1), as was first done by
Heisenberg.
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Chapter 3

Time-independent Schrodinger
equation

3.1 Eigenvalue equation for the energy

In this chapter we are going to solve the Schrodinger equation for a few simple
potentials, and in one spatial dimension. In order to do this we will first look for
solutions of a very special form. We separate the time and space variables and
write the wave function as a product of two functions, each of a single variable:

U(z,t) = P(2)o(t) . (3.1.1)

At this point this may look like a rather restrictive choice, which may actually
hinder us in getting any far in our search for solutions. As we will see very soon,
this is not the case — for the moment let us just proceed and derive the equations
for the two separate functions. The Schrodinger equation now looks as follows:
do h? d*y

th)— = ————=0o+V , 3.1.2
G o g.2? T Ve (3.1.2)
and this is already quite interesting, because if we divide it by ¢ we notice that

on the left-hand side only ¢ appears and on the right-hand side only ):
L 1do R 1d*y)
. ) 1.
theat = arwd T (3.13)

Assuming that V' is time-independent (in other words, we are considering isolated
systems), the left-hand side is only a function of ¢ and the right-hand side of x.
Such an equation admits solutions only if both sides are constants:

do h? d*y

The equation for ¢ is trivial to solve: ¢ = Cexp(—iFt/h). The constant C' is
relevant for the normalization of the wave function — this, however, only matters

25
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for the product ¢, and so when we discuss ¢ we can simply drop the constant
C:
- Bt
¢ = 6—1? . (3.1.5)
For this class of solutions the time dependence turns out to be particularly simple
and is just an overall phase. This means, in particular, that the probability

density is equal to
(W (z, )]* = [6(t) Pl (2)]* = [ ()] (3.1.6)

and therefore time-independent. The expected value of any function of x is also
time independent, and the same is true for expected values of any function of p
— this means that any physical quantity, which can be expressed as a function
of x and p in classical mechanics (basically all physical quantities), has a time-
independent expectation value. The probability of any measurement of such a
state is constant in time: such states are therefore called stationary.

We discover another remarkable property of these states if we look at the
operator corresponding to the total energy. We have seen above that in quantum
mechanics the operator for the kinetic energy is given by (h?/2M)d?/0x?. 1If we
add to this the potential energy, V(z) we get the operator for the total energy
— the corresponding function is called Hamiltonian in classical mechanics, and
therefore Hamiltonian operator in quantum mechanics:

o B2 92

= o7 +V(z) . (3.1.7)

This is exactly the differential operator which acts on v in the second equation
in (3.1.4), which can in fact be written as

Hy=FEy |

i.e. as an eigenvalue equation for the Hamiltonian. The latter is also called
the time-independent Schrodinger equation. We can look for solutions of this
equation only if we specify the form of the potential energy V(x), and this we
will do in the following sections of this chapter for a few simple cases. The fact
that the solutions of the time-independent Schrodinger equation are eigenvalues
of the Hamiltonian implies that if we act on ¢ with any power of H we always
get ™) — if we evaluate the expectation value of any power of the energy, we
get as result E to the same power:

(H") = /dm\D*ﬁ"\If = /dw*ﬁw - /dw*Ew — E" . (3.1.8)

The measurement of the energy of these states gives E with probability 1. The
stationary states have a definite energy.
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While all these are very interesting properties of these special solutions of
the Schrodinger equation, we are still left with the question whether it is at all
useful to consider these states in detail if our final goal is to solve the time-
dependent Schrodinger equation. The answer is yes, because any solution of the
Schrodinger equation can be written as a superposition (in general an infinite
sum) of stationary states:

Bt

U(x,t) = che_’Twn(x) : (3.1.9)

Obviously, as soon as one has more than one term in the sum (and two different
energies E,, # E,,), the state is not stationary anymore, and the corresponding
probability density is no longer time independent. From expression (3.1.9) one
also sees that specifying the initial conditions, ¥(z,0) is equivalent to providing
the coefficients ¢,, — once this is done, one immediately has the wave function at
any later time, as the time dependence is fully given by the exponentials of time.
This shows that if one has solved the time-independent Schrédinger equation (and
therefore determined all eigenvalues F,, and all corresponding eigenfunctions 1),,),
the solution of the time-independent equation is obtained very easily.

3.2 The infinite square well

As a first example of a potential for which we solve the Schrodinger equation we
consider a very simple one: it is zero in a finite interval and infinite everywhere
else

(3.2.1)

V(J;):{o 0<zr<a

oo otherwise
The wave function must then be confined to the same interval and is zero for
x < 0 or x > a. The time-independent Schrodinger equation for this potential is
a free-particle equation in this interval:

B ()
- = <z< . 2.
SV da? Ey(x) 0<z<a (3.2.2)
This is a simple, ordinary differential equation,
d*y)(x) ) 2ME
Fra —k*)(x) k= - , (3.2.3)
whose solution is well known:
Y(z) = Asin(kx) + Bcos(kx) . (3.2.4)

We assume that the solution (but not its derivative) is continuous at the borders
of the interval:

P(0)=1Y(a)=0 =B=0, Asin(ka)=0 . (3.2.5)
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The latter condition has one trivial solution, A = 0, and an infinite number of
nontrivial ones which are independent of A, but constrain k:

ka=nm ;neZ . (3.2.6)

The value k& = 0 gives the trivial solution ¢ (z) = 0, whereas all negative values are
equivalent to the positive ones, because the minus sign in the argument of the sine
function can be reabsorbed in the sign of A, which is an irrelevant overall phase.
We will therefore consider only positive values of n. The boundary conditions
restrict the allowed k (and energy!) values to a discrete set, but leave the value of
A still undetermined — we can now pin it down with the help of the normalization
condition

/ drlp(z)* =1 . (3.2.7)
0
The integral is easy to evaluate and gives

nmwT a 2

.2
/0 dx sin <T) =3 = A= ~ (3.2.8)
where we have arbitrarily chosen A to be positive exploiting our freedom in fixing
its phase.

In this manner we have determined all eigenfunctions of the Hamiltonian —
and also the eigenvalues, because the allowed values of k, which we obtained
imposing the boundary conditions, provide us with the eigenvalues of the energy
(cf. Eq. (3.2.3)): s

n°mh
E, = TMaE (3.2.9)
We see here again that the sign of n does not matter, and that the eigenvalues of
the energy are all positive. This is in accordance to a general result which is easy
to prove!: the minimum eigenvalue of the energy is larger than the minimum of
the potential. The corresponding eigenfunctions are

Un(z) = \/gsin (n%a:) . (3.2.10)

These eigenfunctions have a number of interesting properties which are worth
listing here:

1. They all have a definite parity under inversions around the middle point of
the interval [0, a]. The functions with an odd n are even and viceversa:

Yopt1(z) = Yopi1(a — ), Yon(x) = —thop(a — x) . (3.2.11)

!Rewrite the time-independent Schrodinger equation as d?w/dx? = 2M/h*(V — E)y. If
E < Viin then the right-hand side of the equation is a positive coefficient times . This implies
that such a solution does not approach zero at infinity and is therefore not normalizable. (This
is just a hint, prove it!)
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2. The n-th eigenfunction has n — 1 zeros.

3. The eigenfunctions are mutually orthogonal

/a depr () (x) =0 Ym#n . (3.2.12)

0

(Evaluate the integral and show it!). Together with the normalization con-
dition, we can express these relations in the following compact form

/a daxpr () () = 6 - (3.2.13)

0

4. The infinite set of all eigenfunctions v, (x) form a basis in the space of
functions which satisfy the boundary conditions f(0) = f(a) = 0 and are
continuous. This is a result of Fourier analysis. It means that any function
f(z) with these properties can be written as

_ i entha(@) = \/gi ¢y sin (?) , (3.2.14)
n=1 n=1

and that the coefficients ¢, are all zero if and only if the function itself is
Zero.

Given a function f(x) the corresponding coefficients ¢, can be obtained with
the help of the following observation: Eq. (3.2.13) implies that if we multiply
the function f(z) with ¥ (x) and integrate in the interval [0, a] we get the n-th
coefficient

/ dxi) (x Z cm/ Az (), (x) = i CnOmmn = Cn - (3.2.15)
0 m=1

All the information about the function f(z) is contained in the coefficients ¢,.
Indeed one can translate any property of the function itself into a property of the
set of Fourier coefficients. The normalization property, e.g., becomes

/Oa drf*(x)f(r) = /O“ dr (i c;‘nzp;(m)> (i Cn@/)n(x))

m=1 n=1

Z c cn/ dxpy (), (x Z!cn\z— 1. (3.2.16)

m,n=1

Analogously one can calculate the expectation value of the energy and express
this as an infinite sum over the Fourier coefficients:

NN PE = B S e 3.2.17
=> el n—QMa22n|cn| . (3.2.17)
n=1 n=1
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3.3 The harmonic oscillator

The second example of potential that we discuss here is that of the harmonic
oscillator. The potential is quadratic in the displacement from the rest position
Zo-

Viz) = %k(:c — ) (3.3.1)

In classical mechanics the solution of the equation of motion for this potential is
given by an oscillatory movement with a fixed frequency w = /k/M. In order
to simplify our discussion we choose the origin at zy and replace k£ with w:

1

V(z) = §Mw2:v2 : (3.3.2)

The eigenvalue equation for the energy looks as follows:

L[, -
oYY —h pri (Mwz)*| Y(x) = BEy(x) . (3.3.3)

3.3.1 Solution by the analytical method

In order to solve the equation we first clean up the notation and multiply the
equation by 2/hw:

h d2¢ M W
= — 3.3.4
odz t Y= w (3.3.4)
We then change the variable z for &, deﬁned as
M
¢ = wa (3.3.5)
and rewrite the equation as
d2
T e — ) (33.6)

dgz

where K = 2F /hw. To solve this equation we need to make several steps, and
start by looking at the behaviour of the function for large &.

Step 1 For large ¢ we can neglect K with respect to €2 and get the equation:

a*y

T £2) (3.3.7)

E—00 =

which is solved by? ¢*¢°/2 — the exponential with the plus sign cannot be nor-
malized and should be disregarded: ¢ ~ e ¢/2. We are looking for the exact

2Not quite, but again neglecting small terms compared to &2 yes.
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solution, however, and are not yet satisfied with an approximate solution giving
the leading behaviour for large £. We therefore write:

Y() = h(e ¢/ (3.3.8)

and proceed further looking for ways to determine h.

Step 2 If we insert Eq. (3.3.8) into Eq. (3.3.6) we obtain an equation for h(¢),
namely:

(&) = 261 (§) + (K = 1)h(§) =0 . (3.3.9)

At this stage, it almost looks like we made our life more complicated than it was
with the equation for ), but we will later see that this is not the case.

Step 3 We write the function h as a power series:

[e.9]

h(€) => af (3.3.10)

=1

and look for the solution in this form. Inserting the power series in Eq. (3.3.9)
we get

(11— 1)ag"? = 2" + (K — D)a&'] =0, (3.3.11)
=0

which we can rewrite as

[(1+2) (14 Dago + (K —1—20)a] € =0 . (3.3.12)

WE

l

Il
=)

Since the power series expansion is unique, it vanishes only if all the coefficients
of all the powers of £ vanish, i.e. if

20+1-K
[+2)(1+1 K—-1-2l)a; =0 = —

which is a recursive determination of all the coefficients in terms of the first
one. Actually, given the coefficient ag, all the coefficients with even index get
determined, but not the odd ones. These are determined in terms of a;, so that
all in all the function is fixed by two constants, ag and a;. In turn, at least one
of the two we would have to determine through the normalization condition.
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Step 4 Indeed, the question arises whether the solution we have found can be
at all normalized. In order to answer this question we look at the behaviour of
our power series for large values of £&. This will be determined by the coefficients
with large values of [, and so we simplify Eq. (3.3.13) in this limit:

2
[ >0 = aq2= Zal . (3.3.14)

Inserting this back into the power series, we can resum it and get:

=00 = h(g)NcZﬁ 1:02%5%:0652 : (3.3.15)
=2k k

so when we look back at the behaviour of ¢ we find out that we have now
destroyed the nice behaviour at infinity:

Y(E) = h(E)e €T 02 (3.3.16)

At first sight it seems that all the work we have done so far is nearly useless, as we
cannot interpret these solutions of the differential equation as wave functions...

Step 5 ... unless we require that starting from a certain value of [ the coefficients
a; all vanish. This will happen if for [ = n, one specific integer, the right-hand
side of Eq. (3.3.13) vanishes:

1
n+1=K = En:hw(n+§) . (3.3.17)
This is a condition on the values of the energy: only for these values we can find
a solution of the differential equation for 1) that is integrable and can therefore
be interpreted as a wave function.

Step 6 For each positive integer n (and each eigenvalue of energy) we can
get the explicit form of the functions h,(§). These are polynomials of degree
n, which contain all possible lower powers of ¢ with the same parity as n, and
whose coefficients are fixed by the recursion relation (3.3.13). They are called the
Hermite polynomials and the first few read

Hy=1, H =2¢, Hy=46 -2, H;=8¢—12¢ . (3.3.18)

In order to get the complete eigenfunctions of H we should still normalize U, =
H, e ¢/2 — we do this below.
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3.3.2 Solution by the algebraic method

After having solved the differential equation by standard, analytical methods, we
now show how one can obtain the same solution by the algebraic method, based
on the use of raising and lowering operators, which will be useful also in other
contexts. Since the Hamiltonian is the sum of two squares, we could factorize
it in two factors linear in momentum and position. If we speak of the classical
Hamiltonian, this is straightforward:

(r* + (Mwz)?) L(—z’p + Mwz)(ip + Mwz) . (3.3.19)

H =

T oM
In quantum mechanics this is not so simple, because both momentum as well as
position are operators, and the factorization of operators requires more care, as
we have to consider their ordering. Indeed if we write the factorization formula
(3.3.19) substituting p with p, we discover that it does not work, and that we get
an extra term besides the Hamiltonian:

1 ~ hw
The reason for the appearance of this extra term is that the momentum and
position operators do not commute:

#,p] = ih . (3.3.21)

This is easy to verify, by letting the product of the two operators act on a test
function. When the momentum is to the left of x, the derivative acts both on x
and on the test function. The action of the derivative on x is responsible for the
non-zero commutator, and in the end also of the extra term in Eq. (3.3.20).

We now give names to the two operators appearing in Eq. (3.3.20)

1
a0y = ———(Fp + Mwz) |, 3.3.22
+ 271Mw($p ) ( )

and write the Hamiltonian in terms of these

N 1 1
H = hw (a_a+ - 5) = hw <a+a_ + 5) . (3.3.23)

The latter is the form we will use more often but the two are obviously equivalent.
The fact that the constant term changes as we change the order of the two
operators is a sign of a nonvanishing commutator between a, and a_. Indeed it
is easy to verify that

la_,ai]=1". (3.3.24)
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We now immediately exploit this commutation relation to show that if 1
is an eigenfunction of the Hamiltonian with eigenvalue E, then a1 is also an
eigenfunction, and the corresponding eigenvalue is £ + hw:

. 1 3
Hayyp = hw (a+a_ + 5) app = hway (a+a_ + 5) (0

= ay(H+ hw) = (B + hw)a 1 . (3.3.25)

Analogously we can show that a_t is an eigenfunction with eigenvalue F — hw.
So, given one single eigenfunction, we can construct an infinite set of them by
operating repeatedly with the raising and lowering operators — the name comes
precisely from the fact that they increase or decrease the eigenvalue by one unit
of hw.

While increasing the eigenvalues of energy an indefinite number of times is
allowed, if we decrease it enough times we get to a point where the eigenvalue
would become negative, and we have discussed above that this is impossible — the
eigenfunction corresponding to a negative eigenvalue would not be normalizable.
What happens is that applying a_ to an eigenfunction whose eigenvalue is smaller
than hw annihilates the function:

Huy = Egthy , By < hw ,= a_tg=0 . (3.3.26)

In this case it is very easy to determine Fy, because the nontrivial part of the
Hamiltonian applied to vy gives zero:

1 1 1
hw (a+a + 5) Wy = 571&)’(/}0 = Fy= éhw . (3327)

Starting from this minimum value, we can now climb the whole ladder of the
allowed eigenvalues which are given by

1
E, = hw (n + 5) VneN . (3.3.28)

3.3.3 Determining the eigenfunctions

Now that we have the eigenvalues, we want to get in explicit form the corre-
sponding eigenfunctions. We now determine the lowest eigenfunction, ¥y and
then obtain all the others by applying repeatedly the raising operator. The rele-
vant equation for determining 1y is

a_Pg=0 = — =——a1g , (3329)
T

and the solution is of the form

Yo(x) = Ae” 2™ (3.3.30)
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The constant A can again be pinned down by imposing the normalization condi-
tion

B
1:]A\2/ VI YA / dre ™ = [ AP AT (333)

Choosing A to be real and positive, the lowest eigenfunction of the harmonic

oscillator is i

M w

Yo(z) = (—hw> A (3.3.32)
T

Higher eigenfunctions are obtained by applying the raising operator. In gen-
eral, however, the application of the raising operator will not give automatically
the correct normalization. Defining 1, to be the properly normalized eigenfunc-
tions, we have

Apthn(x) = aghpa(x) (3.3.33)

and we now determine the constants A,,. We start from the observation that
the raising and lowering operators are the hermitian conjugate of each other.
The hermitian conjugate is defined as follows: given two function f and g whose
square is integrable, and an operator (5, the hermitian conjugate of the latter is
defined as®

/dxf*(x)ég(:v) = /dx(OTf)*(x)g(x) . (3.3.34)

For a4+ we have:

[ dof wasgta) = m;* [der @) (jFﬁ%vLwa) o(x)

_ \/%7 / da [(ih—Jerx) Iz (x)] o)
~ [ dstany @) | (3.3.35)

where the shift of the operators from g to f has been made through a partial
integration — the only sign affected is the one in front of the derivative. We now
look at the normalization of the modulus square of a1,:

|Apy1]? = /dx(a+wn)*a+wn = /dxw;&mrwn : (3.3.36)

In the last integral the function a_a, v, appears, which is proportional 1,,. The
proportionality factor is easy to determine, by looking at the Hamiltonian and
remembering that Hi, = hw(n + 1/2)1,:

1

oyt = [% + ﬂ Yo = (n+ 1)t . (3.3.37)

3If we do not explicitly write the integration boundaries, it is meant that the integral goes
from —oo to co.
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We therefore conclude that
ApiP=n+1) = A,=+vn . (3.3.38)

We are now done with the determination of the normalization coefficient, and
have so fully determined the eigenfunctions of the harmonic oscillator. The n-th
eigenfunction is obtained by acting n times with the a, on vy. Each time we get
a factor A;, withi=1,...,n. All in all we get

1
V!

which is a fully explicit determination, since we have the explicit expressions of
1o and the operators a .

As in the case of the infinite square well, the eigenfunctions of the Hamiltonian
form a basis in the space of all possible wave functions; i.e. any wave function
f(x) can be written as a superposition of (infinitely many) ,,:

Un(z) = —=ajo(z) , (3.3.39)

[e.9]

= ctala) (3.3.40)

n=0

Moreover, they have the orthonormality property as we can easily show:

Apn = /dmb aya_1y, —n/dxwfnzﬂn =nln, , (3.3.41)

but using the property ai = a_ we also get

A = /dm(a_¢m)*a_wn = /dx(a+a_¢m)*¢n =mly, , (3.3.42)

So if m # n the integral I,,, must vanish; in general I,,,, = 0,,,. This means that
the coefficients ¢,, can be also determined through the projection

/ dz? f(x Zcm / dxim = Y Cnmn = Co - (3.3.43)

m

We now give the explicit form of the first few eigenfunctions ¢,,. In order to
do this it is convenient to introduce two new symbols:

1/4
a= (E) , E= T (3.3.44)

We then have

¢0 — ae—£2/2 , ¢1 _ \/50456_52/2 : ¢2 _
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In deriving these expressions it is easy to convince oneself that the n-th eigenfunc-
tion will be a polynomial of order n times the exponential exp(—£2/2), and that
the polynomial will contain either odd or even powers of &, depending whether
n is odd or even. These polynomials are the same we already encountered in the
previous section. They are called Hermite polynomials and denoted by H,, (&) and
are well known in the mathematical literature. Using their standard definition
the eigenfunctions of the harmonic oscillator can be written as follows

(07 2
n= H,(&)e S72 3.3.46
= A H(6) (3.3.46)
There are various ways to derive their form explicitly. We mention here three of
them:

Recursion relation:
Hn-i-l(S) - QSHn(g) - 2an—1(§) 3
(Starting point: Hy=H 1=1)

Derivative relation:

dH,

df = 2an71<€) )
Generating function:
2249, > Z"
o~ _ ;Hﬂn(g), (3.3.47)

where the latter shows how to obtain the Hermite polynomials from a Taylor
expansion around z = 0 of an elementary function.

3.3.4 Quantum vs classical solution, coherent states

In classical physics a particle which moves in a quadratic potential has a fixed to-
tal energy, but oscillating (time-dependent) position and momentum. The latter
implies that the total energy gets constantly transformed among potential and
kinetic energy: at x = 0 the particle has only kinetic energy T" = muv?/2, whereas
at its maximal distance from the origin, |z|max = v/w it is at rest (zero kinetic
energy) and has maximal potential energy V = Mw|z|?,. /2.

The quantum states with fixed energy, the eigenfunctions we have just dis-
cussed, look rather different. Their probability distribution in space is time
independent (the quantum particle does not oscillate in a harmonic oscillator
potential):

W (2, )] = oy () Bt e Bt () = () (3.3.48)
as is the expectation value of any measurable quantity. For example, if we eval-
uate the expectation value of the potential energy

1

hew hew
V(z) = §Mw2;p2 = I(a+ +a )= I(ai +a® +ara_+a_ay) (3.3.49)
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we get

_ﬁw

V) = [arsvi, =" [ drviosa +aane,

hw hw 1 1
= — (2 1 = — - | ==FE 3.
1 /d:zcwn( n+ 1), 5 <n+ 2) 5 En (3.3.50)
where we have used the orthonormality property of the eigenfunctions and the
relations:

ara_p, =n, , a_apP, = (n+ 1), . (3.3.51)

The outcome of the calculation is that the expectation value of the potential
energy is constant in time and half the total energy. Obviously this means that
the expectation value of the kinetic energy is the same:

(TY=(H-V)=E,—E,/2=E,/2 . (3.3.52)

There is another important difference between the quantum and the classical
harmonic oscillator. In the classical case, the particle oscillates between the two
extrema =4|x|n. and cannot move beyond these two points because it does not
have enough energy to overcome the potential barrier. The quantum particle
in a 22 potential, on the other hand, has a nonzero probability to be detected
even beyond the point where the potential is equal to its total energy. In fact
arbitrarily far away from this point. The probability decreases with the distance
exponentially fast, but is not zero. This is clearly a quantum effect which disap-
pears in the limit A~ — 0, but in this limit none of the energy eigenfunctions will
look anything like a classical harmonic oscillator. For all of them, in the classical
limit the exponential factor exp(—¢?/2) will dominate everything else and will
give a zero probability of finding a particle away from the origin.

How can we meaningfully get the classical limit from our quantum solutions?
The trick is to construct the appropriate superpositions of the energy eigenfunc-
tions. These are called coherent states and are the eigenfunctions of the a_
operator. Without explaining how one arrives to this idea, we now simply try
to derive the form of the eigenfunctions of a_ and then discuss their properties.
The eigenvalue equation for a_ is

a,@ = )\(]5,\ . (3353)

We assume that such an eigenfunction exists and expand it in the eigenfunctions
of the Hamiltonian:

o= cn(Nthn . (3.3.54)
Applying a_ on these we get:

a_pr =Y _cn(Nathy =D ca NVt (3.3.55)

n n
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and the requirement that this be equal to \¢, is satisfied if the coefficients ¢, ()
satisfy the following recursive equation

A A"

\/n—HCnO‘) = Cn(A)Z\/mCo(/\)- (3.3.56)

The function ¢, is therefore proportional to a constant cg(\), whereas all the rest
is fixed. This constant can be pinned down through the normalization condition

Cra1(A) =

2n
1= /dm;@ = leaW =leaMP D % = |eo(N)]2eP |, (3.3.57)

which implies (taking ¢ to be real and positive)
co(N) = e M2 (3.3.58)

We now have found the eigenfunctions of a_ in explicit form
)\n
— o P2 A
o\ =c¢ En \/mwn , (3.3.59)

and seen that there is no restriction on the eigenvalues A — indeed they can be
any complex number.

We now look at the expectation values of the Hamiltonian, z and p and their
squares on these states:

. . 1 , 1
(H) = /dmﬁw (a+a_ + 5) dr = hw Xn: len(N)] <n + 5) . (3.3.60)
and inserting the explicit expression of the ¢,(\) it is easy to get

(H) = hw (w? + %) . (3.3.61)

The square of the Hamiltonian gives

A 1 1
(H?) = hPw® Z len(V)]? <n2 +n+ 1) = h2w? (|>\|4 + 2|A12 + 5) . (3.3.62)

and consequently, the standard deviation of the energy is

op =/ (H?) — (H)2 = hw|)| . (3.3.63)

These coherent states can have all possible values above the minimum allowed
hw/2 for the expectation value of the energy. It is interesting to note that the

ratio
op |}

(E)  AP+3

(3.3.64)
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vanishes both for very large as for very small || and is maximal at [A| = 1/+/2.
The evaluation of (z) and (p) is very simple if we write them as linear com-
binations of the a4 operators:

h hMw

2]\4(’0(614r +a), p=i 5 (ay —a_) . (3.3.65)

T =

We then have

(z) = \/% {/dﬂf(a—%)*@Jr/dmia—%} = \/%(X”r)\)
(p) = Z\/@ [/dm(a@)*@—/dm;a@] —i hMT“(A* )

(3.3.66)

The expectation value of x (p) is proportional to the real (imaginary) part of the
eigenvalue . Evaluating the expectation values of the squares of x and p is also
easy and gives

h
(@) = gy (AT 2P +1)
hM
(") = —Tw (N + A2 =277 —1) | (3.3.67)

and the corresponding standard deviations are

| h [hMw h
Oy = m > Op = T = OpOy = 5 . (3368)

For the coherent states the product of the standard deviations in x and p is
exactly the minimum allowed by the Heisenberg uncertainty relation. This is
indeed a good indication that these states are as close to classical states as it is
possible.

To finally convince ourselves we evaluate the corresponding time-dependent
solutions:

CDA(QT’ t) = Z Cn()‘)wn(x)e_iEnt/h
—|A]2 )\n —iw(n
— M /22 ﬁe (n+1/2)t4), ()

—iwt\"
A2 2—iwt/2 (Ae™™") o —iwt)2
= € —F—Yn(x) =€ x) , (3.3.69

where A\(t) = Aexp(—iwt). In the last step we have written the time-dependent
eigenfunction as an irrelevant (time-dependent) phase times the time-independent
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one where, however, the eigenvalue A is taken to be time dependent. And its time
dependence is a simple oscillation with frequency w. So, since the expectation
value of  and p in a state ¢, are proportional to the real and imaginary parts
of A, in the time dependent case they will be proportional to the real and imagi-
nary parts of A(t) and will therefore have the oscillatory behaviour of a classical
harmonic oscillator. If we choose as eigenvalue A o< 1/v/h we can take the limit
h — 0 and nicely recover the behaviour of a classical particle: constant total
energy (but time dependent potential and kinetic energies!), oscillating = and p
and uncertainties that go to zero.

3.4 The free particle

As a next example we now discuss the free particle. Although it may sound
trivial and not really worth discussing, it is a useful (and nontrivial!) example to
see what happens if the eigenvalue of the energy is larger than the potential at
infinity. So, we take the potential constant everywhere and equal to zero. The
time-independent Schrodinger equation then becomes

h? d*y) d*y

2

with k = v/2M E/h. The general solution of this equation has the form
Y(z) = Ae'*™ 4 Be ™ (3.4.2)
which implies that the time—dependent solution can be written as
U(z,t) = Ae*(o=3mrt) 4 pe—ik(etant) (3.4.3)

i.e. as a superposition of two plane waves, one travelling in the right direction
and the other in the left direction, both with speed |v| = hk/2M. Notice that
this wave-function describes a free particle with kinetic energy E = (hk)%/2M.
Classically, such a kinetic energy would correspond to a velocity |va| = hk/M,
which is two times larger than the quantum velocity. This apparent paradox
can be resolved if we consider that something close to a classical particle which
moves with a certain speed in a certain direction should also be localized in space
— a plane wave, on the other hand, is spread over the whole axis. If we build a
superposition of plane waves which is maximally localized both in space as well
as in momentum, then we will have a wave-function of the form*

hk

X, ’k(%*t) ) 4.
(z,t) \/_/ dko(k (3.4.4)

4Since we integrate over all momenta, it is not necessary to separate the term with a positive
k from the one with a negative one. The square root of 27 in front of the integral is conventional,
see below.
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It is well known that if such a wave packet is well localized in momentum around
a certain momentum kg, it will move coherently with velocity

Ak

_ 4 3.4.5
T dk2M ., M (3:4.5)

which coincides with the classical one. The paradox arose because what we looked
at was the so-called phase velocity, which describes how fast the individual plane
waves move — the group velocity gives however the correct description of the
movement of the wave packet.

Actually the introduction of wave packets is necessary not only to understand
the relation to the classical free particle. More importantly, we have to introduce
them to make sense at all of the solutions of the Schrodinger equations in the
quantum theory. If we require that the eigenfunctions of the energy are correctly
normalized, we get an unpleasant surprise®

o0 oo
/ dz|¥(z,t)|* = |A|2/ dr = oo , (3.4.6)
— 50 —0o0

which is nothing but the statement that a free particle with a fixed momentum is
not at all localized in space (a consequence of the uncertainty relation). This is
not an acceptable wave function, because it is not normalizable. But although we
cannot take the eigenfunctions of the energy as properly defined wave functions,
we can still use them as a basis and write a generic wave function as a superposi-
tion of plane waves. Since we have no restrictions on the admissible values of the
momenta k, instead of having a sum, we will have an integral of the form (3.4.4).
Before accepting this as a solution of the Schrodinger equation for a free particle
we still have to answer two questions:

1. what is the condition on ¢(k) if we require that W(z,t) is properly normal-
ized?

2. how do we find an explicit solution given the initial condition ¥(z,0)?

The answer to both questions comes from Fourier analysis and we state them
without proof:

| dslenp = [ aowp (3.4.7)
which is analogous to the condition Y [c,|?> = 1 in the case of discrete eigen-
values. Concerning the initial condition W(z,0), if I set ¢ = 0 in Eq. (3.4.4) 1
get

¥ (z,0) = \/% /_ " dko(k)e | (3.4.8)

5Again without lack of generality we have dropped the part proportional to B, i.e. with
negative k.
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which is nothing but the statement that W(z,0) is the inverse Fourier transform
of ¢(k). But since the Fourier transformation is invertible, this relation can only
be true if ¢(k) is the Fourier transform of the initial conditions:

o(k dz(z,0)e % (3.4.9)

=7l

So, if we are given the initial condition ¥(z,0) we can evaluate its Fourier trans-
form ¢(k). The initial condition must be properly normalized by definition. This
implies that [ dk|¢(k)|* = 1. Having the explicit form of ¢(k) we can insert it in
Eq. (3.4.4) and get explicitly the solution of the Schrodinger equation for the free
particle — since ¢(k) is properly normalized ¥ (z,¢) will also be so at any later
time.

3.5 The finite square well

After having looked at one-dimensional potentials which have either only discrete
or only continuous eigenvalues of the energy, we now look at a more realistic case
where one has both simultaneously. This is the case of the finite square well:

| =W —a<zr<a
V(z) = { . ol > a . (3.5.1)
3.5.1 Negative eigenvalues

We first consider the eigenfunctions with negative eigenvalues. In this case the
Schrodinger equation can be written piecewise in this form

RegionI (2 < —a) —%%w(x) = EY(x) E <0
Region I (2| <a) —L&Ly(x) = (E+Vo)(z) (E+Vp) >0 . (3.5.2)
Region 111 (v >a) —L L y(x) = Fy(x) E<0

In regions I and IIT the solution is a linear combination of exponentials exp(+xx),
with Kk = vV—2M E/h. In region I the exponential with the minus sign must be
discarded, because it would explode when z — —oo, whereas in region III the
exponential with the plus sign has to be discarded:

Ui(z) = Ae™ Ym(z) = Fe ™ . (3.5.3)

In region II the sign of the constant on the right-hand side of the equation is
positive and we can write the solution of the differential equation as a combination
of sine and cosine:
2M(E + V)

. .

Yn(x) = Csin(lz) + D cos(lz) [ = (3.5.4)
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Although the differential equation is defined piecewise, the solution should be
continuous over the whole real axis. We will now impose the continuity of both
the function as well as its first derivative® at the two points where the potential
has a discontinuity, *+ = +a. Before doing this, however, we notice that the
potential is even in = — this implies that if ¥)(x) is a solution of the equation so is
also 1¥(—z), and that we can split any solution into an even and an odd part. So
without loss of generality we can consider either even or odd solutions. We start
with the even solutions. In region I and III the coefficients A and F' have to be
equal, and in region IT we have to drop the sine:

Fer® T < —a
(x) =< Decos(lx) |z|<a . (3.5.5)
Fe™r® T >a

The continuity condition for the function itself and its derivative then read
Fe "% = D cos(la) — kFe ™™ = —Dlsin(la) (3.5.6)
and if we divide the second by the first we get
k = ltan(la) . (3.5.7)

This is a trascendental equation for the energy, which is the only unknown in the
equation and appears both inside x and [. The equation can be solved numerically.
In two extreme cases we can find approximate analytical solutions:

1. Very deep well, i.e. lp.xa = 2MVpa/h > 1. In this case as we vary
the energy F between zero and —V} the argument of the tangent decreases
from a very large value (Iaxa) down to zero. Every time la gets close to
(2n + 1)7/2 the tangent becomes very large. In the region £ ~ —Vj /I is
very large and so the equation will have many solutions, all of them near
the points where la ~ (2n + 1)7/2. For the energy this means

(2n + 1)*72R2

E+Vy~
o oM (2a)?

n=0,1,... (3.5.8)

The right-hand side gives the eigenvalues of the energy for the infinite square
well of size 2a, cf. Eq. (3.2.9). We should indeed expect that if we consider
a very deep well and look at the lowest eigenvalues of the energy, these
should be well approximated by those of the infinite square well.

2. Very shallow well, [.xa = V2MVpa/h < 1. In this case the argument of
the tangent is always small. The equation then becomes approximately

k=1a = hvV—2ME =2M(E + Vy)a . (3.5.9)

6The second derivative of the solution is discontinuous, as Eq. (3.5.2) tells us, but if we
integrate this once or twice, we get a continuous function.
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The left-hand side of the equation grows as we move from E = 0 down
to —V4. The right-hand side, on the other hand decreases from 2MaVj at
E =0 to zero at ' = —V{. It is then clear that there will always be one
solution to the equation: no matter how shallow the well is, there is always
one negative energy eigenvalue. The quadratic equation (3.5.9) admits two
solutions. The one with £ > —V/ reads:

h? 8M a2V,
E=— — 1+ ——-1] . 5.1
Vot a7 < + ) (3.5.10)

Once we solve Eq. (3.5.7) and determine the negative energy eigenvalues, we
still have two constants to determine (D and F) if we want to have also the
corresponding eigenfunctions fully explicitly. The first of the two equations in
(3.5.6) gives I in terms of D, and D we can determine by the normalization
condition. The relevant integral is (after expressing F in terms of D)

2|D|? {/ dx cos?(Ix) —|—COSQ(ZCL)/ d:ve_Q"‘(“"_“)} =1, (3.5.11)
0 a
and the solution for D reads:
2kl
|D? = - . (3.5.12)

k(sin(2la) + 2la) + 21 cos?(la)

With this we now have the eigenfunction fully explicitly in terms of the negative
eigenvalues of the energy (which we can determine only numerically, unfortu-
nately).

3.5.2 Positive eigenvalues

If we look at the positive eigenvalues the equation to be solved is again given
piecewise

Region I (2 < —a) —%% (x) = EY(x) E>0

Region IT  (|z] < a) —2Lap(x) = (B + Vo)b(z) (E+Vp) >0

Region III (2 > a) —%% (x) = EvY(x) E>0

(3.5.13)
In contrast to the case of the negative eigenvalues the equation has now the same
form in all three regions, and it is only the constant that changes (not even its
sign, as with the negative eigenvalues). The solutions has therefore the form

@Z)I@) — Aeika} + Be—ikx
Yrr(z) = Csin(lz) + D cos(lx)
Urp(x) = Fe™ + Ge ™ (3.5.14)
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where k = vV2M E /h. In this case we cannot eliminate any of the terms in the
general solution, because none of these explodes at infinity. We do have the
problem, however, that these eigenfunctions will not be integrable (just like in
the case of the free particle). This is a generic feature of all the eigenfunctions
with eigenvalues larger than the value of the potential at infinity. Since one
can add at will a constant to the potential without changing the physics of the
problem, one usually takes the potential to go to zero at infinity. In which case
the problem with the normalization occurs for all eigenfunctions corresponding
to positive eigenvalues.

As in the case of the free particle, the eigenfunctions of the energy, although
not normalizable, are nonetheless useful as a basis on which to expand the proper
wave functions. What we still have to do before being able to do so is to solve
the continuity conditions: we have four of them all in all, two at * = —a and two
at = a. This means that we can express four of the six constants appearing in
Eq. (3.5.14) in terms of the remaining two. The remaining two will be then fixed
by the initial conditions and we have then the explicit solution.

Before doing this, however, we remark that using the solutions in the form
(3.5.14) does still provide useful information. We reason as follows. Suppose we
have as initial condition a wave packet with momenta concentrated around k,
and with |¥(z,0)|? concentrated somewhere on the left-hand side of the real axis
(if the distribution in momenta is very much peaked, the uncertainty relation
implies that the distribution in space will be rather flat, but this does not matter
— we can always take it to be practically zero around z = 0 by moving it far
enough to the left). We would have to describe this as an integral in k, but
for simplicity we look at one single value of k. We could then ask ourselves
what is the probability that this particle will travel over the well, and at far
times in the future be concentrated on the right-hand side of the well, or that it
will be bounced back by the potential well, and be on the left-hand side of the
potential well, travelling towards the left. This is a question which we can ask
independently of the normalization of the function as a whole. What matters are
the ratios:

R=_—— T=_"1 (3.5.15)

which are respectively called reflection and transmission coefficients. Notice that
we do not need to have a term with G: if we do not have in the initial conditions
a wave on the right-hand side of the axis travelling left, this will not be generated
by the dynamics. The coefficients R and T" can be calculated even if the solution
cannot be normalized. In fact, if we drop G from Eq. (3.5.14), we are left with
five constants and four conditions. All constants can be expressed in terms of A,
and the ratio will be independent of A.
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The four continuity conditions read:

Ae7*a 1 Betke = _C'sin(la) + D cos(la)
ik(Ae™™** — Be'**) = [[C cos(la) + Dsin(la)]
C'sin(la) + D cos(la) = Fe™
I[Ccos(la) — Dsin(la)] = ikFe™* . (3.5.16)

The solution allows us to express B and F in terms of A:

B - Z,sm(2la) (2 — K)F

2kl
2k Ae~2ika
F = . 3.5.17
2kl cos(2la) — i(k? + 12) sin(2la) ( )

The transmission coefficient is then given by:

T=|1+ 2M(E + VO))] B : (3.5.18)

Vo .5 (2a
———————sin“ | —
AE(E + V) h
Notice that the transmission coefficient becomes one if the sine is zero, i.e. if its
argument is a multiple of :

2a n?m2h?
—\/2M(F = FE=— — . 5.1
wV (E+ Vo) =nr = %+2M(2a)2 (3.5.19)

Remarkably, the values of the energy for which the well becomes transparent to
an incoming wave packet coincide with the eigenvalues of the infinite square well.
Note, however, that talking about a transmission coefficient makes sense only if
E >0, so that Eq. (3.5.19) is valid only if n is large enough.
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Chapter 4

The formalism of quantum
mechanics

Until now we have solved the Schrodinger equation for a few simple one-dimensional
potentials. In these cases we have seen a number of interesting mathematical
properties emerge, but have not yet tried to have a systematic understanding of
these. The scope of this chapter is to analyze and understand the formal math-
ematical structure of quantum mechanics. As we will see, the possible solutions
of the Schrodinger equation live in a vector space, albeit an infinite dimensional
one. This is a consequence of the linearity property of the Schrodinger equation:
a linear combination of different solutions is still a solution. Moreover when we
interpret the modulus square of the wave function as a probability distribution we
must require that its integral is finite — the latter integral has all the properties of
the norm of a vector, and can be seen as a scalar product of a vector with itself.
The space of all the wave functions is a vector space in which a scalar (or inner)
product is defined. Such a space is called an inner product vector space, or a
Hilbert space!. Analyzing in some more details this mathematical structure is es-
sential before we embark in the discussion of more complicated physical systems
in three dimensions, like the hydrogen atom.

4.1 Vector spaces

A linear vector space is a set V of objects v, w, ... where the operation of sum
of two such objects v +w and of multiplication by a scalar av are defined and
yield elements of the same vector space. These operations have the following
properties:

e Scalar multiplication is distributive both in the vectors as well as in the

'The latter has the property of completeness, namely that every Cauchy sequence of vectors
converges to a vector in the same space.

49
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scalars:

a(v+w)=av+aw and (a+bv=av+bv . (4.1.1)

Scalar multiplication is associative

a(bv) = abv . (4.1.2)

Addition is associative and commutative

v+(wt+z)=(v+w)+z and v+w=w+vVv . (4.1.3)

There exists a null vector 0 such that

v+0=v VYveV. (4.1.4)

For every vector v there exists an inverse under addition —v such that

v+ (—=v)=0 . (4.1.5)

In quantum mechanics one considers linear combinations with complex numbers.
In this case one says that the vector space is defined over the field of complex
numbers.

Linear dependence. A set of n vectors {v;} is said to be linearly independent
if the relation

D avi=0 (4.1.6)
=1

can be satisfied only with a; =0, Vi =1,...,n.

Dimension of a vector space. A vector space has dimension n if the maximum
number of linearly independent vectors is n.

It is then easy to prove that any element of an n-dimensional vector space
can be written as a linear combination of n linearly independent vectors. A set
of n linearly independent vectors {v;} is called a basis. Once a basis is fixed any
vector v can also be identified by its coordinates on this basis, i.e. by the set of
n scalars {v;} which specify the unique linear combination of the basis vectors
which gives v:

n
V= Z%Vz' . (4.1.7)
i=1
Sometimes vectors are represented by putting all the coordinates in a column:

U1
V2
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4.2 Inner product spaces

A scalar or inner product is a familiar concept when we speak about vectors in a
three-dimensional space. In that case the scalar product is given by the product
of the lengths of the vectors times the cosine of the angle between them. This
understanding, however, proceeds in the wrong direction, because we can define
lengths and angles only starting from a scalar product — the problem is that we
have a visual, intuitive understanding of lengths and angles in three-dimensional
space and are led to believe that we can define the scalar product in terms of
these. The right way to proceed is to define a scalar product in abstract terms,
by listing its essential properties.

A scalar product in a vector space is an operation which associates a complex
number to every pair of vectors:

(v,w)eC (4.2.1)
and has the following properties
o (Vv,w)=(w,v)* skew—symmetry;
e (V,v)>0,0&v=0 positive semidefiniteness;
o (v,aw +bz) =a(v,w)+b(v,2) linearity in the right-hand vector.

Linearity in the right-hand vector and skew-symmetry imply that the scalar prod-
uct is antilinear in the left-hand vector:

(av+bw,z) =a*(v,z) + b*(w,z) . (4.2.2)

A few important definitions:
1. Two vectors are said to be orthogonal if their scalar product vanishes.
2. |v| = +/(v, V) is the norm of the vector v. A vector is normalized if its norm
is one.
3. A basis is orthonormal if the vectors which belong to it are mutually orthogonal
and are all normalized:

(ei, ej) = 51’]’ . (423)

Working with an orthonormal basis is very convenient, because the coordinates
of any vector on this basis are obtained by taking the scalar product with the
corresponding basis vector

vV = Zviei , v = (e, V) (4.2.4)
i=1

According to the theorem of Gram-Schmidt, it is always possible to construct
an orthonormal basis. In fact they have formulated an explicit procedure for
constructing such a basis starting from a basis of non orthogonal vectors.
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4.3 Quantum mechanics and Hilbert spaces

In quantum mechanics we represent states of physical systems through functions
of the relevant spatial coordinates (until now we have considered only single parti-
cles in one dimension, but it is clear that in the physically more interesting cases,
we will have more particles in three-dimensional space and correspondingly more
variables). Since superpositions of different states are still admissible states of
the physical system, we must establish the principle that linear combinations of
wave functions are still admissible wave functions. The principle of superposition
translates into the fact that all the possible wave functions behave like vectors.
Actually, before we can conclude that they really form a vector space, we have to
remember that the essential property of the wave functions, which allows us to
interpret their modulus squared as a probability distribution, is that their modu-
lus squared is an integrable function. It is easy to show that linear combinations
of functions whose modulus squared is integrable also have an integrable modu-
lus squared: be f and g two functions with an integrable modulus squared, and
h = af + bg, then

[ dstuta)f = o [ dslg@P + b [ delgla)f +2 [ deRe(abf (@)
(4.3.1)
The last integral is finite as follows from the Schwarz inequality

< \/ [aslr@p [asdg@l . a2

and therefore so is the integral of |h(z)|?. This shows that all the possible wave
functions indeed form a vector space. The integral of the modulus square is
naturally interpreted as the norm of the vector represented by the wave function,
and the integral

\ [ st

[ dar@ta)

as the scalar product in this vector space. Again because of Schwarz inequality
(4.3.2), this scalar product is always finite. The admissible wave functions of a
physical system have the structure of an inner product vector space, albeit of an
infinite dimensional one — in short this is called a Hilbert space.

Very often the manipulations or the operations one performs on wave functions
(like expanding it on a basis of functions) can be made on the basis of their vector
properties alone, and not because they are functions or have any special form.
When doing these manipulations it is convenient to view the wave functions like
vectors — the notation should reflect this.

The notation adopted until now for vectors and vector spaces is the usual
one when considering finite dimensional vector spaces. In quantum mechanics,
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where one deals with infinite dimensional Hilbert spaces, it is common and more
convenient to adopt the notation invented by Dirac, where vectors are represented
as follows:

U(x) = [v) e H

where H indicates the Hilbert space. In this notation scalar products are conve-
niently represented as

(6 = / dr g ()b (z) - (4.3.3)

4.3.1 Operators

In quantum mechanics observables are represented by linear, hermitian operators
on the Hilbert space. We first introduce a few general notions about operators
on vector spaces and then concentrate on the special features of operators rep-
resenting observables. Operators in a Hilbert space are maps of the space onto
itself:

O:H—>H .

Their action on vectors is represented by
Oly) = [0¢) .
They are linear if, for every a,b € C and |¢), [¢) € H
O(alg) + b)) = a0l6) +bOJy) (13.4

In an inner product vector space we can define the adjoint of an operator in the
following way:

(0|Oy) = (OT|y) . (4.3.5)

An operator is called hermitian if it coincides with its adjoint:
o'=0,

and antihermitian if it is equal to minus its adjoint
o' =-0 .

A generic operator which has neither of the two properties can always be decom-
posed into its hermitian and antihermitian components:

O:%(O—FOT)—F%(O—OT)EO}L—FO@}L .

Finally an operator is defined to be unitary if its adjoint is equal to its inverse:

0'0=00"=1 .
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Unitary operators are important because they do not change the norm of the
vectors on which they act:

(Ov|OY) = (Y|OT0Y) = (WlY) . (4.3.6)

If the vector space is finite dimensional, we can choose a basis {|i)} on it and
represent every vector through its coordinates. We can then ask ourselves how
the action of an operator on a generic vector changes its coordinates. Every linear
operator can be represented by a matrix which can be obtained by representing
the transformed basis vectors in the same basis:

Oli) = >_ Oily) - (4.3.7)

As usual, it is convenient to work with an orthonormal basis, in which case the
matrix element O;; can be obtained by projecting the transformed basis vector
O|i) onto another basis vector |j):

Oji = (j|Oi) . (4.3.8)

The coordinates of the transformed vector O|¢)) are obtained by multiplying the
column vector ¢; given by the coordinates ) = > . ¢;|¢) with the matrix O;;, as
follows from the linearity property of the operator:

Op) =0} aili) = aOl) = 3 _aOli) - (4.3.9)

7 i

The coordinates of the transformed vector are:

J

4.4 Observables as hermitian operators

We have seen that in quantum mechanics observables are represented by linear
operators on the Hilbert space, and that the expectation value of the measurement
of that observable in the state described by the wave function ¢ (x) is given by
the integral?

Q) = / dr* QU = (WIQIY) | (4.4.1)

2In preceding chapters we distinguished the observable from the operator by putting a hat
on the operator. Whenever it is evident from the context that we speak of operators we drop
the hat in order to simplify the notation.
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where the latter representation is given in the Dirac notation we just introduced.
The result of a measurement must be a real number and so must be its expectation
value. This means that

(WIQIY) = (WIQ)" = (Qvl¥) = (WIQ"[v) (4.4.2)

must hold for any state |¢). This implies that Q = QT, i.e. observables are
represented by hermitian operators.

We have seen that it is possible to have states in which a measurement of
an observable gives always the same result ¢. In particular, if we perform a
measurement and then immediately after a second one of the same observable, we
expect that the second result will be identical to the first by physical continuity.
Such determinate states are physically important and easy to generate (by doing
a measurement) and we now ask ourselves how we can formulate their property
mathematically. In such a state the expectation value must be equal to the fixed
result of the measurement and the standard deviation must be equal to zero:

W) =a 05 =I(Q—a)*lV) ={(Q—¥l(Q—q)¥) =0,

where the second equality sign follows because () is hermitian and the value ¢ is of
course real. The requirement that the standard deviation be zero is equivalent to
the requirement that the vector |(Q)—q)v) has zero norm, and from the properties
of the scalar product this means that the vector |(Q — ¢)v) must be zero:

Q) = qly) (4.4.3)

i.e. that [¢) is an eigenstate of the operator () corresponding to the eigenvalue
q.

The set of eigenvalues of an operator is called its spectrum and we now discuss
some important properties of the spectra of hermitian operators. We distinguish
the case of a discrete and of a continuous spectrum.

4.4.1 Discrete spectra of hermitian operators

If the spectrum of a hermitian operator is discrete then the following properties
hold:

e The eigenvalues of hermitian operators are real.
Suppose that |1) is the eigenvector associated to the eigenvalue ¢ which we
assume to be complex. Then

(QvlY) = WIQY) = ¢ WlY) = q(¥[¥) (4.4.4)

which implies (¢* — ¢){(¥|¢) = 0. Since we do not discuss the trivial eigen-
vector |0), the relation implies that ¢* = ¢, i.e. that ¢ is real.
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e Eigenvectors related to different eigenvalues are orthogonal.
Be |¢) and |¢) two eigenvectors with eigenvalues ¢; and go respectively. We
then have

0(¢lY) = (9lQY) = (QolY) = qr(oly) - (4.4.5)

Since we have assumed that ¢ # ¢; it follows that (¢[y)) = 0. If we want
to conclude that all eigenvectors of a hermitian operator are orthogonal, we
must also discuss the case of degenerate eigenvectors. In this case we cannot
prove that the eigenvectors are orthogonal, but since linear combinations of
degenerate eigenvectors are still eigenvectors belonging to the same eigen-
values, we can apply the Gram-Schmidt orthogonalization procedure and
choose a basis of orthogonal eigenvectors in this linear subspace.

e All the eigenvectors of a hermitian operator representing an ob-
servable form a basis in the Hilbert space.
In finite dimensional vector spaces it can be proven that the eigenvectors
of a hermitian operator span the space. For infinite dimensional vector
spaces there is no proof that this is the case. However Dirac argued that it
must be taken as an axiom of quantum mechanics that the spectrum of any
hermitian operator which represents an observable must span the Hilbert
space. The argument is quite important and we now discuss it in detail.

We have already stated that after we make a measurement and obtain a cer-
tain result, a second measurement of the same quantity immediately after the
first will give the same result. This happens even if before the first measurement
its outcome is not certain. The measurement then forces the system to change
its state and to collapse into an eigenstate of the operator representing the ob-
servable. If we interpret the measurement in this way we have to draw a few
important conclusions:

1. The possible outcomes of a measurement of an observable are all possible
eigenvalues of the operator representing that observable.

2. Viceversa, any eigenvalue of an operator is a possible outcome of a mea-
surement of the observable represented by that operator.

3. A measurement makes a system collapse into an eigenstate of that operator;
however, it should not change the system so much as to make it jump into
an eigenstate which is not contained in its original state. Le. if the system
is in a state |¢)) which is given by a superposition of eigenstates |1);) of the

observable @):
) = Z cili)

(]

the possible outcomes of a measurement of () in this state are all the eigen-
values corresponding to the eigenstates contained in |¢)).
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Since the latter statement applies to any state |¢)) it means that it must be
possible to represent any state as a linear superposition of the eigenstates of any
observable. Even if we cannot prove that this is the case, it is necessary to assume
that it is so in order to have a consistent formulation of quantum mechanics.

We stress that the latter statement is a physical one, not a mathematical one.
Should one find a hermitian operator whose eigenstates do not span the Hilbert
space, this does not contradict our statement and does not imply that we have
to give up our axiom. We would only have to conclude that that operator cannot
represent an observable.

4.4.2 Continuous spectra of hermitian operators

Ideally one would like to extend the situation we just described for discrete spec-
tra to continuous ones. The problem is that eigenfunctions corresponding to
continuously varying eigenvalues are not normalizable, and so they do not belong
to the Hilbert space. It is nonetheless convenient to use the eigenfunctions as a
basis in the Hilbert space, although this may sound very weird. The best way to
illustrate how this is done is to discuss a few examples.

Eigenvalues and eigenfunctions of momentum

We have seen that momentum is represented by the following operator:

. _hd
P=%dr -
Its eigenfunctions are obtained by solving the differential equation:
B (@) = piy(a) | (1.46)
which has as solution '
Yy(x) = AeP*/h (4.4.7)

The latter function is not square integrable for any complex value of p and so
does not belong to the Hilbert space. Yet, if we require that p be real, as it should
be, we can indeed use the exponential functions ,(z) as a basis, in the sense
that any function which is square-integrable can be Fourier transformed and so
can be written as

x) = dp c d c(p sz/h , 4.4.8
v@) = [ eyt = = [ (1.48)
where we have chosen as normalization A = 1/v/27h, and where ¢(p) is the Fourier
transformation of ¢(x). The “basis” functions ,(z) also satisfy a generalized
orthonormality property because:

/_ " de 0 (@) (@) = | AP /_ T I 5 ) (4.4.9)

o0
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so that the “coefficients” ¢(p) are obtained by a projection onto a basis function

Yp():

c(p) = dzx ) (x)(x) = dxe™ P M (x 4.4.10
0= [ drv@ie - ——= [ b() (4.4.10)
which is nothing but the Fourier transform. Despite the fact that the functions
() do not belong to the Hilbert space, it is nonetheless convenient to represent
them also as vectors |p). The extended orthonormality condition then reads

(plp') =d(p—») , (4.4.11)
and the projection onto a basis function (i.e. the Fourier transform):
{pl) = cp) - (4.4.12)

Eigenvalues and eigenfunctions of position

The position operator is multiplication by the position variable, £ = z and the
eigenfunction equation reads:

athy(z) = yy(z) (4.4.13)

where y on the left-hand side has to be interpreted as the eigenvalue and so as
a fixed value, in contrast to x on the right-hand side and in the argument of
the function, which is a continuous variable. Equation (4.4.13) does not admit
solutions unless the function v, (x) is zero for any value of x # y. In other words

the solution is
b, () = Ab(z —y) | (4.4.14)

for any constant A. Choosing A = 1 again gives for the eigenfunctions of = a
generalized orthonormality condition:

/ dx Py (), (v) = / dr o(z —y)o(x —y) =6y —v) . (4.4.15)
The eigenfunctions of & are not normalizable (in fact they are not even functions
but distributions), but any function can again be written as a superposition of
them. This is in fact trivial:

o o0

vie) = [ dyelyiy@) = [ dyewie—g) —cw) . (1410)
—00 —00

as the coefficients of the expansion are given by the function itself.

These two examples show that dealing with eigenvalues and eigenfunctions
of hermitian operators in the continuum part of the spectrum brings us outside
of the Hilbert space. It is nevertheless convenient to consider these eigenfunc-
tions and extend the same properties of reality of the eigenvalues, orthogonality
and completeness of the eigenfunctions also to this case and treat the two cases
(discrete or continuous spectra) in exactly the same manner.
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4.5 Generalized statistical intepretation

We started by defining the wave function, a function of the position variable x
with the property of being square integrable, as describing completely the state of
a particle. In particular its modulus squared, multiplied by the interval dx gives
the probability of finding the particle in a small interval dz around the point x:

Probability of finding the particle in (z,z + dr) = |¥(z,t)]*dz . (4.5.1)

Position, however, is only one of many possible observables and now that we
have described the formal structure of quantum mechanics, there seems to be
no reason to privilege it with respect to other observables. The aim of quantum
mechanics is to determine the state of the system meant as a vector |¢(¢)) in
Hilbert space as a function of time. Once we know this state we can answer
all the questions about the probability of a measurement of any observable. To
obtain this probability we must distinguish again the case of a discrete spectrum
from that of a continuous spectrum.

1. Discrete spectrum
If we know the eigenvectors |1, ) and the corresponding eigenvalues ¢, we
can project any state [¢) on these:

) =D calthn) with ¢, = (Pn|y) . (4.5.2)

The probability of obtaining ¢, in a measurement of the observable @ is
given by
lenl? (4.5.3)

2. Continuous spectrum
Be [¢,) the eigenvectors corresponding to the continuously varying eigen-
values ¢. Although [¢,) do not live in the Hilbert space we can write any
state [¢) as

) = / dae(q)by) with c(q) = (bl¥) (4.5.4)

and the probability of obtaining a value between ¢ and ¢+ dq in a measure-
ment of the observable () is given by

le(q)Pdg - (4.5.5)

The wave function is nothing but the projection of the abstract state [)
onto the eigenfunctions of x: ¢ (z) = (x[¢p). The same information is
contained in the projection onto the eigenfunctions of p: ¥(q) = (g|t’). The
latter is the Fourier transform of ¢ (x) and indeed knowing either of the
two implies knowing also the other as follows from the theory of Fourier
transforms.
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4.6 The uncertainty principle

At the beginning we have discussed without proof the uncertainty principle of
Heisenberg, stating that one cannot know simultaneously momentum and posi-
tion of a particle with any precision — the product of the two uncertainties satisfies
an inequality. We are now in a position to prove the inequality, but will do it
without referring to momentum and position in particular. We will prove it for
two generic observables A and B. The standard deviations of the two are defined
as

od = (A= (A)PI(A - () = (1)
3 = (B (B)UIB — (B)w) = {gla) - (46.1)

o = ((
The product of the two standard deviations, being the product of two norms
squared satisfies the Schwarz inequality:

oion = (f1f)gla) = [(Flg)* - (4.6.2)

The product (f|g) is a complex number, and its modulus squared is larger than
the square of its imaginary part:

1 2
b 2 119P = (5[l - 6l1)) (4.63)
The imaginary part can be explicitly given as follows

(flg) = (1A~ (A)(B—(B)¥) = (AB) — (4)(B)
(lf) = (BA) = (A)(B)

= Sl — ) = (A B) (4.6.4)

The inequality for the product of the two standard deviations then reads

o202 > <%<[A,B]>)2 | (4.6.5)

For the case of momentum and position we have [z, p|] = ik and therefore

A\ 2
azai > (5) : (4.6.6)

If two operators do not commute it is impossible to construct a basis of si-
multaneous eigenstates of the two operators. If this were possible, then the
commutator would always vanish on any basis vector, and this would mean that
it would be zero.
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4.6.1 Minimum uncertainty wave packets

The proof of the uncertainty principle is based on the use of two inequalities:

(f1f)alg) = [(flg)

the latter being valid for any complex number z. We now want to see what hap-
pens if we require that both inequalities become equalities, such as to minimize
the product of the two uncertainties, and have a state with minimal quantum
character, so to say. The first inequality becomes an equality if

l9) = clf) (4.6.8)

while the second one becomes an equality if the scalar product (g|f) is purely
imaginary. The latter condition is fulfilled if ¢ is purely imaginary:

> and |z]* > (Imz)? , (4.6.7)

lg) =dalf) a€R. (4.6.9)

Let us now see what these conditions mean in the case of the position—
momentum uncertainty principle:

) = G-I, 1S =G — @)l
o) = dlf) = (’fi—<p>) 6) = ia(é — @) . (46.10)

1 dx
The latter differential equation has as solution
i) = Ae~ @)/ @m)gilp)z/n (4.6.11)

The minimum uncertainty wave function is a plane wave multiplied by a gaussian
distribution in x around the expectation value (r). The width of the gaussian
distribution is determined by the parameter a, the smaller the latter, the wider
the gaussian. Independently of that, however the product of the two standard
deviations is always minimal, equal to h/2.

4.6.2 Energy-time uncertainty

We now consider the uncertainty principle for the energy and another unspecified
observable which we assume not to commute with the Hamiltonian. As we will
see at the end of the discussion, no matter what observable we choose we will find
that the product of the uncertainty in the energy and a time interval has to satisfy
an inequality. This is what is usually referred to as energy-time uncertainty.

We assume that [H, Q] # 0 and therefore that

o2od > <%<[H, Q]>>2 . (46.12)
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An observable whose operator does not commute with the Hamiltonian cannot
be constant in time. We have seen that the eigenfunctions of the Hamiltonian
are stationary states — these, because of the nonzero commutator between H and
Q, cannot be eigenstates of Q The eigenstates of Q must then have a nontrivial
time dependence. Let us look, e.g. at the time derivative of the expected value

of Q:
d d A d ~ 0
@) = 2 WIQW) = (5 ¥|QY) + (¥l Q|¢> WiQlzv) - (4.6.13)

The time derivative of the state v is given by the action of the Hamiltonian on
that state. We then have

d 0Q

Q) = HAYIQW) — 1 QI + (59 (16.14)
If the operator Q does not explicitly depend on time we have
d
Q) = 3 WAL Qll) = +(,Q)) (46.15)

The time derivative of the expectation value of an operator is equal to (i/h
times) the expectation value of the commutator of the same operator with the
Hamiltonian. Since the latter is what enters the inequality (4.6.12) we can rewrite
this as

2
0hoH > (g%@) . (4.6.16)

The ratio At = 0 /(d(Q)/dt) has the dimension of a time and represents the time
needed by a state to change the expectation value of () by one standard deviation.
Roughly speaking this is the time during which the system does not change
significantly its state. In terms of this time interval the uncertainty relation

(4.6.12) reads
h

AFEAt > 3 (4.6.17)
The energy-time uncertainty relation can be described as follows: if a system
is in a state which evolves in time, such that, e.¢g. an observable changes its value
with time, then the energy of this state cannot be measured with any precision.
The shorter the time needed for this state to change significantly, the larger is
the minimum uncertainty with which one can determine the energy of this state.
The energy-time uncertainty relation is particularly relevant to unstable particles.
The latter particles only live for a finite amount of time (some of them a very
short one) and the measurement of their mass is a measurement of their energy
when they are at rest. As it follows from the uncertainty relation it is impossible
to measure the mass of these particles with a precision higher than the inverse
of their lifetime (multiplied by A/2). In this respect it is instructive to glance
through the PDG [4] and check explictly that this is the case for some of the
many particles which are listed there.



Chapter 5

Angular momentum

Before analyzing some interesting physical systems in three spatial dimensions
we now discuss in some detail a new observable which emerges as we move from
one to three dimensions: angular momentum. Classically it is defined as

L=xxp, (5.0.1)

and the corresponding quantum operator reads
A ~ ~ h —
L=xxp=-xxV, (5.0.2)
i

with individual components given by

. h{( 0O 9, . h( 0 0 ~  h( 0 9,
L="(yL 22, 1, =2(-2 22, L= (2 ).
S (yﬁz Zay)’ Yoo (Zax xaz)’ S (xay 83;)

It is usually assumed that the different spatial coordinates commute and that so
do also the components of momentum. The commutation relations among the
angular momentum components are then calculable and are given by!

Ly, L, =ihL, , and cyclic permutations. (5.0.3)

All three commutation relations can also be written compactly with the help of
the totally antisymmetric tensor of rank three €;;1, €123 = 1:

[Li, L] = iheijn Ly (5.0.4)

where we have adopted Einstein’s summation convention. As we have learned
in the previous chapter, these commutation relations imply that there exists an
uncertainty relation among the three different components of angular momentum,
which reads

h
oL,0L, > B |(L.)| , and cyclic permutations. (5.0.5)

'To simplify the notation we again drop the hat to indicate an operator.

63



64 CHAPTER 5. ANGULAR MOMENTUM

This means that one cannot build eigenfunctions of more than one component
of angular momentum at a time. If we consider the angular momentum squared,
however, L? = L? + L} + L? we find out that this observable commutes with all
three components:

[L27 LZ] - [L?w LZ] + [L32p LZ] =
= Lac[Laca Lz] + [Lam Lz]Lm + Ly[Ly7 Lz] + [Ly7 Lz]Ly =
—  —ih(LoLy+ LyLy — LyLy — LyL,) =0 . (5.0.6)

We can find simultaneous eigenfunctions of L? and one of the components, e.g.
L,, and will do this next.

5.1 Eigenfunctions of L? and L..

Simultaneous eigenfunctions of two operators are identified by two eigenvalues.
We indicate the eigenvalues of L2 by X and those of L, by p and the eigenfunctions
with |\ u). As in the case of the harmonic oscillator, Sec. 3.3, we can determine
all the possible eigenvalues rather easily with the help of raising and lowering

operators
Ly=1L,+x1L, . (5.1.1)

These operators obviously commute with L2 but not with L, — the commutator
with the latter is proportional to themselves

L.,L.] = [L., L,) £ i[L., L,) = h(iL, + L,) = £hL. . (5.1.2)

With the help of these commutation relations we can show that the state Ly |\ )
is still an eigenstate of L? with the same eigenvalue (obviously), and of L, al-
though with eigenvalue p + h:

LLifAp) = LaLP|A p) = ALi|A p)
Ll = LelAp)=RLaAp) = uE R  (5.13)

Acting repeatedly with L4 on an eigenstate we can therefore change at will, by
units of A, the eigenvalue of L.. At some point, however, we reach a value which
is too low pt—nh < —A or too high, u+mh > A. These values are not admissible
because

A= (A pLA ) = (A pl LN ) + (N pl LA o) + (5.1.4)

which shows that |A| > |u|, because L, are hermitian operators and the expec-
tation value of their square in any state is therefore positive. We conclude that
for any A there must be a maximal eigenvalue of u, indicated by iz, such that

L |A fimaz) =0 . (5.1.5)
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We now observe that the angular momentum squared can be expressed as follows:
>=LiL:+L>FhL, . (5.1.6)

This relation is obtained by writing
Lily =L+ L) FilL,, L)) =L*— L? £ hL, , (5.1.7)

and bringing L? on the left-hand side of the equation. We now use Eq. (5.1.6)
on |\ ftmaz) and write

AMA tmaz) = (L-Ly + L2+ BL.) A fmas)
= (O + #im + h:umaa:) |)‘ ,“max>

= A = fmazr(Bmaz + 1) (5.1.8)
Writing fi,,q: = A¢ in terms of the dimensionless number ¢, we have
A=hH({l+1) . (5.1.9)
Analogously we can show that
A = tmin(min — B) = fmin = —hL (5.1.10)

where the other possible solution, i, = h(¢ + 1) has been excluded because
Mmaz > Mmin- In addition to the two extreme values, all other possible eigenvalues
of L, are of the form fi(n—/{) or h({—m), with n,m € N. In particular there must
be a maximal integer n,,q, for which il = hA(n,,4, — ¢). This implies that the
admissible values of ¢ are such that 2¢ € N. We have now identified all possible
eigenvalues of L? and L., which can be expressed in terms of two half-integers, ¢
and m, with m = n—¢, Vn € N such that |m| < ¢,. The simultaneous eigenstates
of L? and L, are then written as |¢ m) and

L2 m) = R0+ 1)|¢m) , L,|¢ m) = hm|¢m) . (5.1.11)

5.1.1 Explicit form of the eigenfunctions

We now derive the explicit form of the eigenfunctions of angular momentum. To
this aim it is convenient to start by rewriting the angular momentum operators
in spherical coordinates:

L. = +he®™ (% + icot 9%)

2
L? = —712[,1 g(sin0£>+ L0 } : (5.1.12)



66 CHAPTER 5. ANGULAR MOMENTUM

Since the angular momentum operators do not involve any derivative with respect
to r, any function of the form:

Wm(ﬁ 0, 90) = R(T)}/Zm(a 90) ) (5'1'13)

is an eigenfunction of angular momentum provided that the angular dependent
part satisfies the eigenvalue equations:

LY (0,0) = KL+ 1DY(0,9) .
LY 0.0) = hmY{™(0,¢). (5.1.14)

The last of the two equations is easy to solve:
Y (0,0) = [ (B)e (5.1.15)

and makes the first one into a one-dimensional differential equation for f;":

1 9/, 0 27 N
[SM% (SmH%) - S::—Qe} FmO) = —L(+ 1) fm(0) . (5.1.16)

Instead of solving this differential equation, we now discuss an alternative
route for the explicit derivation of f;”, which is simpler. We exploit the fact that
Ly ff =0, which amounts to the following equation:

a 0
(% —écot&) fi=0, (5.1.17)

whose solution is ff = sin @, as can be immediately checked. Given the eigen-
function with the highest allowed value of m, all the others can be obtained by
repeated action of the L_ operator:

e <% + £ cot 9) sin®@ | (5.1.18)
and in general
Y (0,0) o LMY (0,0) (5.1.19)

which provides an explicit form for the eigenfunctions. We have written only a
proportionality factor, because L_ does not leave the norm of the state on which
it acts unchanged, and one has to renormalize the function after every action of
the L_ operator. Without discussing these issues we now give the explicit form
of the eigenfunctions of angular momentum

Yy (0, ) = 6\/(%447; 1) Ei; IZB;eimV’Pg"(cose) , (5.1.20)
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where € = (—1)™ for m > 0 and ¢ = 1 otherwise. The functions P;* are the
so-called associated Legendre functions, and are so defined:

jm|
Pr(z) = (1 — 22)mi2 <%> Py(z), (5.1.21)

where Py(x) are the Legendre polynomial defined as

Py(x) = % (%) (2 —1)" . (5.1.22)

The eigenfunctions Y;” as given in Eq. (5.1.20) are an orthonormal set of functions

1 2
/ dCOSQ/ do Y] Y] = 00j0mn - (5.1.23)
- 0

1

5.2 Spin

In nature angular momentum is not only associated to an orbital motion of a
particle, but is also an intrinsic property of particles, even if they are at rest.
There are known particles with spin 0 (like pions, kaons etc.), spin 1/2 (like
electrons, muons, protons, etc.), spin 1 (like photons, Z and W bosons, p mesons
etc.), spin 3/2 (like the Delta and other baryonic resonances), spin 2 (like the
graviton or hadronic resonances). We now discuss the quantum treatment of a
particle of spin 1/2 ignoring the xz-dependent part of its wave function.

As far as its spin is concerned, there are two possible states for such a particle:

|1/21/2) or [1/2-1/2) . (5.2.1)

If we use these as basis vectors we can express any other vector as a column with
two entries and operators as 2 x 2 matrices. The two basis vectors, in particular

have the form:
= (g ). = (7). (522

The operators S? and S, are diagonal on this basis:

S| 21f2) = @2 21/, SYa =) = RERE) (52.3)

and can therefore be represented by the following diagonal matrices

32 (10 h(1 0
2—_ — —
§* =" (0 1), S. 2(0_1>. (5.2.4)

There are two more operators to consider, S, , or Sy, related by

So= (S, +5.)/2, S,=(S,—S.)/2. (5.2.5)
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The action of S on the basis vectors is known:

S.ff21f) = 0, S fifz =1f2) = Hl2 ) |
S_[f21fs) = hjya i), S|z 1) =0,

0 1 0 0
D T

and this gives us the matrix representation of the operators S, ,:

h(o0o1 hfo0 —i
sot(00) SR ) een

In summary, if the total spin is 1/2 the four spin operators can be represented
in terms of the unit matrix and three so-called Pauli matrices:

S* = h*(3/1)og, S, =h/20,, S,=h/209, S,=h/203, (5.2.8)

where oq is the unit matrix and

alz(gé),agz(g _é),03:((1) _?). (5.2.9)

In a spin one half system the Hilbert space is finite dimensional (has dimension
two) and very simple to deal with. On the other hand it allows one to see how
quantum mechanics works, with all its complexities. For example if the particle is
in a state |1/2 1/2) we can ask ourselves what results can come out of a measurement
of the z component of spin. In order to answer this question we have to determine
the eigenvalues and eigenvectors of S,. The possible eigenvalues we know already;,
and are the same as those of S,, £h/2. If we want to determine the eigenvectors
of S, in the basis of the S, eigenvectors we can work directly with the matrices
(5.2.8,5.2.9). It is easy to find out that the eigenvectors are

pemetiy == (1) o eme= () G2

We then have to expand the state |1/2 1/2) in the basis of the eigenvectors of
S, and the modulus squared of the coefficients of this expansion gives us the
probability to obtain either of the eigenvalues as result of the measurement:

/2 Y/2) =

1/2) + 12 m,=-1/2) . (5.2.11)

— Y2 ma= —|
\/_ \/_
The probabilities to get either +//2 or —//2 in a measurement of S, are therefore
equal, and both 50%. A measurement of S, would then make the particle change
its state and collapse on either |1/2 m,=1/2) or |/2 m,= —1/2). If we now make



5.2. SPIN 69

a measurement of S, we are not anymore sure to get h/2, because the system is
now in a superposition of the two states |1/2%1/2). From Eq. (5.2.10) we read off
that the probability to get either of the two possible results is again 50%.
Similar questions can be asked about S,. All one needs to know in that case
is again the representation of its eigenvectors in the basis of the eigenvectors of

S,:

ppmed = (5 ) memem= (). 621

5.2.1 Electron in a magnetic field

The treatment of spin presented so far has not made reference to any dynamics
related to the spin. We now discuss the time evolution of the spin states if the
Hamiltonian depends on spin, and consider as an example a spin coupled to a
magnetic field:

H=—ji-B, where ji=1S, (5.2.13)

is the magnetic moment associated with the spin S. In the case of electrons, e.g.
v = gee/(2m.) where e and m, are charge and mass of the electron, respectively,
and g, its gyromagnetic ratio, equal to 2 up to a one per mille correction (the so-
called electron anomalous magnetic moment, which can be calculated in quantum
field theory and is measured nowadays with incredible accuracy [5]). Let us now
consider a constant magnetic field pointing in the z direction:

B=DBje. = H=—vB)S.=—vBoh/2o0s. (5.2.14)

Where the latter representation is given in the basis of the S, eigenvectors: in
this case the Hamiltonian (like any other operator) can be expressed as a 2 x 2
matrix. The solution of the Schrodinger equation then reads

(1)) = aeVPO2|1/a 15) 4 he=VBOU2|1/y ~1/5) (5.2.15)

where a and b specify the initial conditions:

[(0)) = alYf2 1/2) + b[1f2 ~1fa) = < i ) . (5.2.16)

Since [1(0)) must be normalized to one and we are free to choose its phase, we
take both a and b real and equal to

a =cos(a/2), [ =sin(a/2), (5.2.17)

which gives

cos(a/2)eiBot/2 ) (5.2.18)

0) = (o
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We can now evaluate the expectation values of all three spin components in
such a t dependent state, and see how they evolve in time:

(5 = WOISI() = 3sinacosrBu)
(5,) = (OIS, (1) =~ sinasin(rByf) |
(5) = (WOIS.|u() = & eosa (5.2.19)

Although a measurement of any of these spin components will always give either
h/2 or —h/2, the probabilities of these results evolve in time (those of the z and y
components only), and so do the expectation values. The expectation value of the
vector S behaves like a vector at a given angle o with respect to the magnetic field
which precesses about that axis. The precession frequency w = vBy is called the
Larmor frequency and is the same frequency with which an angular momentum
in a magnetic field would precess. This result is in accordance with Ehrenfest’s
theorem, which says that the expectation values behave like the corresponding
classical quantities.

5.3 Addition of angular momenta

If we build a system out of two spins 1/2 what kind of states can we make out
of these? What possible outcomes of measurements of the total spin or of a
single component thereof could we get? These questions we can answer explicitly
because we can build the state of the system out of products of the states of
the single spins, and the operator of the total spin is given by the sum of the
operators of the two spins. Since we have two states for each spin, two spins
together have four states:

[0 = (Y2 Y21 Y2 Y 2)2, [ 1), 14D, [, (5.3.1)

where the last three states are defined in analogy to the first one, i.e. the first
(second) arrow refers to the third component of the first (second) spin. The

action of the operator S, = S 4+ 8@ on these states is easy to calculate:

Sl 1) = SO/ Y| Y2 f2) + [Y2 120 SP /2 1f2),

= (/24 Y2)[Y2 Yoh |2 Yfo)e = R 1) (5.3.2)
and similarly for the others
S =0, S =0, S| =—h ). (5.3.3)

If we would ask an observer to measure the spin of such a system without telling
him/her that this is made out of two spin one half particles, he/she would still
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get results in accordance with the general properties of spin. In other words we
have to be able to reexpress these product states as states of the form [¢m). Since
the maximal value of m which we have obtained is 1, c¢f. (5.3.2), we expect to
have the three states |[11), |10) and |1 —1). We have one more state with m = 0,
however. In order to understand this, we first identify the three ¢ = 1 states by
starting from | 11) = |11) and acting on this with S_ = s 4 5@,

S_|[11) = 5(71)|1/2 o) 1[1/2 1/2)s + [1/2 1/2>15(,2)|1/2 1/2)5 (5.3.4)
Y2 Y201 |Y2 Y2)o + Y2 Yo)u [Y2 =Y/2)0 = | 1) + [ ).

Since S_|11) = ¢|10) where ¢ is a normalization factor, we conclude that

1
10) = (1 40+ 1 1) - (5.3.5)
Acting once more with S_ on this state we get:
S_f<|m>+|m>>=x/§| Wy = 1 =1)=1[), (5.3.6)

as it should be (note that again we have adjusted the normalization factor).

The linearly independent state we are left with is 1/vz(| 1)) — | }1)). Having
m = 0 and being the only state left, we suspect that this is the |00) state. Let
us act on it with S, and S_ and see if we end up getting something else:

Se(td) = 1) = (1) = 111)
St =4 = (4D —1H)

This proves that zero is both maximal as well as the minimal m for this states,
and therefore that £ = 0: (| 1) — | {1))/v/2 = |00).

As a further check we can calculate S? on the four states. We first write the
total spin squared as follows:

(5.3.7)

S? = (SW)2 4 (8@)2 428 . g2
sW.8® = sg® 4 ghgl) 4 ggl)

_ Ligwg® | S s 4 g @) 5.3.8
2 +

and then apply them on the states we constructed:

S 1) = [(S)*+(8®)?+ 28 8®] | 11)
= [R*(3/4+43/4) +0+0+2R71/4] | 11) = h*2[ 1), (5.3.9)

where the last three terms correspond to the three terms in the expansion of
SM . 8@ as in Eq. (5.3.8). This confirms that | 11) = |11), because S?|11) =
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R?1(1 + 1)[]11) = h?2|11). The same check can be made on all the other ¢ = 1
states. Let us now check what happens with |00):

S2( ) — [ 41) = R[(3/4+3/4) —1—2-1/4(| 1)) — | 1)
= 001 -4, (5.3.10)

which confirms that [00) = (| 1) — | {1))/V2.

The one we have just worked out is a special case of a general rule, whose
derivation we will not provide. Combining two angular momenta ¢; and ¢y one
gets all possible states with ¢ = |[¢; — ls|,...,¢; + ¢5. As a minimal check on
this rule, we can count the number of states in both cases. A state of angular
momentum ¢ has 2¢ + 1 states. So the product of two angular momenta ¢; and
(5 has a total of (201 + 1)(20y + 1) = 40105 + 2(¢1 + {3) + 1 states. In the second
case we have to sum 2¢ + 1 from £ = |[{; — 5| up to £, + £5>

1442
> @n+1) =4l + 20 20+ 1, (5.3.11)

n=»~1—4{2

as it should be.

2We assume without loss of generality that ¢; > /5.



Chapter 6

Symmetries in quantum
mechanics

Symmetries play an important role in physics. In quantum physics, where the
mathematics is from the start more complicated and where only a handful of
problems admit analytical solutions, it is very important to have an understand-
ing of the symmetry properties of a system. As in classical physics, and according
to Noether’s theorem, to every continuous symmetry in a system corresponds a
conserved quantity, and identifying them is very important even (or maybe es-
pecially) if one is not able to solve a problem analytically. In this chapter we
explore these concepts with a few simple examples, translations and rotations,
before getting to the hydrogen atom, where indeed rotational invariance is of
fundamental importance.

6.1 Translations

Assume that ¢ () is the wave function of a particle whose dynamics is governed
by the Hamiltonian H and imagine to translate the particle backwards by a. Its
new wave function then becomes

Y(z)=¢Y(x+a) , (6.1.1)
because after the translation the probability to find the particle at z is equal
to the probability to find the particle before the translation at x 4+ a. Can we
obtain the wave function after the translation from the wave function before the
translation by the action of an operator on it? Let us do a Taylor expansion of
(x + a) around a = 0:

O(x) = @)+ (2)a+ %wu(x)aQ +...= (1 + a— + %a ) +.. ) ()

1+ tap 4 S Z‘A2+
—a — —Q
rP T o\ n?
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The operator T (a) generates a translation of a system by —a. A properly defined
transformation should be unitary, so as to leave invariant the norm of the wave
function on which they act. It is easy to verify that this is the case (the inverse
of a translation by a is a translation by —a and this indeed corresponds to the
transforming T into ist adjoint), and see that this is intimately related to the fact
that in the exponential a hermitian operator multiplied by a purely imaginary
constant appears. This is a general property of unitary transformations: when
expanded infinitesimally close to the unit operator they are related to hermitian
operators:

Ue) = 1+ieX +O(e)
1 = U@Wﬂqz(l—kXtuxéﬁ(1+nX+0@%)
= 1+ie(X -XH+0() = X=X. (6.1.3)

The hermitian operator X is called the generator of the transformation U.

Shifting the wave function by a may change the status of the system substan-
tially: for example if the Hamiltonian is a square well, shifting the wave function
will significantly change the energy of that state. If the translation leaves the
system invariant, however, the energy, e.g. will not change at all:

(W H ) = (HD) = (|TT(a) HT (a)|) . (6.1.4)

Since we do not want the invariance of the energy as an accidental result related
to the particular state, but as a true symmetry of the system, which therefore
holds for any state ¢(x), this relation implies that

H="T'(a)HT(a) . (6.1.5)

If we now consider infinitesimal transformations, this relation translates into

H= (1—%ﬁ+...)ﬁ(1+%ﬁ+...) :ﬁ+%[ﬁ[,ﬁ]+0(62), (6.1.6)

which means that translations are a symmetry of a system if and only if momen-
tum commutes with the Hamiltonian. In Chap. 3 we have encountered only one
such system, the free particle, and indeed in that case the eigenstates of energy
were also eigenstates of momentum.

The argument, however, is general and if the transformation U (a) leaves the
Hamiltonian invariant for any a, then if we consider infinitesimal transformations
a = € we have to conclude that the Hamiltonian commutes with the hermitian
operator X. For any continuous transformation we have a hermitian operator,
and therefore a possible observable, and the latter is a constant of motion if the
transformation is a symmetry:

0 ?

§<X> = ﬁ([ﬁ,f(b =0 . (6.1.7)
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6.2 Rotations in two dimensions

In two dimensions we can consider a new kind of transformations of the coordi-
nates, namely rotations. As for translations we can view this as a transformation
of the system of coordinates or as a transformation of the physical system. If
we rotate the system backward by an angle ¢, then the wave function after the
rotation will be

U(x,y) = (@', y) =Y(xrcosp — ysing, zsin g + y cos P) . (6.2.1)

Again we want to write this as the action of an operator on the wave function
¥(x,y), and to make things simple we do it directly for an infinitesimal rotation

Q=€

V) = vlo— eyt en) = vlo) e (o —ug ) i) + O
_ [1 + %L] Wz, y) ++0() (6.2.2)

So the generator of rotations in the xy plane is the z component of angular
momentum.

A two-dimensional Hamiltonian is invariant under rotations if it commutes
with L,. Let us verify this explicitly by considering an invariant Hamiltonian,
for example one of the type

A e
H=o (P3+p2) +V(r) (6.2.3)
with » = /22 +y2 From the commutation relations [p,,L.] = —ihp, and
[py, L.] = ihp, it is easy to show that
[P +p;, L] =0 . (6.2.4)

For the potential we have:
1 0 0 or or\ 0
H vl = (o —gs ) V) = (o5~ ) V0
_ (a9
- (x y )8TV(T)—O . (6.2.5)

So, we conclude that if the potential is of the form V (r) then [H, L,] = 0.
These properties become obvious if we work in polar coordinates

rT=rcosp, y=rsng, (6.2.6)
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in which case the third component of angular momentum has a particularly simple
representation:

A h 0

L,=—-—— . 6.2.7

=70, (6.2.7)

Indeed with these coordinates a rotation is nothing but a shift of the angular
coordinate ¢ and the generator of such a shift is just the derivative with respect to
this coordinate (just like momentum for translations). The invariant Hamiltonian
can be written as follows in these coordinates

2M
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which immediately shows that it commutes with L.. So we can choose the eigen-
functions of the Hamiltonian to be simultaneously eigenfunctions of L. too. Let
us identify the latter. We look for functions which satisfy

Lﬂ/}(ﬂ QD) = gzw(ra 90) ) (629)

and so functions of the form
Ve (r, ) = R(r)e=*" (6.2.10)

for any function R(r). The latter is a single-valued function only if ¢, = hm with
m € N.
Let us now look for solutions of the Schrodinger equation of the form vy, (r, ¢):

~

HR(r)e™? = ER(r)e™¢ . (6.2.11)

The Hamiltonian contains only one term with a derivative with respect to ¢
(or [A/z) and is otherwise independent thereof. If we let the Hamiltonian act on
R(r)e™?, L2 becomes (hm)? and everything is independent of ¢ apart from the
overall phase factor which can however be removed, because it appears on both
sides of the equation. The Schrodinger equation then becomes

[_% (5_:2 A ’Zf_j> + V(T)} R(r) = ER(r) . (6.2.12)

Exploiting the invariance properties of this Hamiltonian, we have simplified the
Schrodinger equation by reducing a two-dimensional problem to a differential
equation in one single variable.
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6.3 Rotations in three dimensions

What is the operator that represents rotations in three dimensions? It is rather
natural to generalize what we have learned about rotations in the zy plan to
three-dimensional space. First of all, a generic rotation in three-dimensional
space can be written as three successive rotations in the xy, then in the zz and
finally in the yz plane (or in any other different order — notice, however, that the
individual rotations would be different in general, because rotations in different
planes do not commute). Such a rotation would then be represented by

T(a,b,c) = gloka/heibly/hgiclz/h (6.3.1)

One is tempted to write the three rotations together in the argument of a single
exponential, but this is nontrivial, because the three operators do not commute.
The argument of the single exponential then involves also the commutators of
the individual arguments. But since the three angular momentum components
do form a closed algebra, each commutator can be expressed in terms of the same
three operators again. We therefore have:

T(a, b, C) _ ei(a’Lz+b’Ly+c’Lz)/ﬁ ’ (632)

where the relation among the angles a, b and ¢ and the corresponding primed
ones can be derived from the Baker-Campbell-Hausdorff formula. The latter
representation for the rotation operator suggests a better one. Indeed we can
rewrite Eq. (6.3.2) as follows:

T(n,y) = e/ (6.3.3)

where ¢ = Va2 + %+ % and n = (a’,V, ') /. This formula is now easy to
understand: indeed any three-dimensional rotation can be identified by an axis
around which the rotation is performed (n) and an angle of rotation (¢). If L,
is the generator of rotations around the z-axis, the generator of rotations around
the n axis is the projection of angular momentum on the same axis: n - L.

A system is invariant under rotations if all three components of angular mo-
mentum commute with the Hamiltonian:

[H,L]=0 . (6.3.4)
A Hamiltonian of the form
N h2

is obviously invariant under rotations. Can we check that it indeed commutes
with all three components of L? This can be easily done by using the represen-
tation of angular momentum in cartesian coordinates. It is however even more
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direct to rewrite the Laplace operator in spherical coordinates

AL LO(,0) 17108 ,0 1 &
T 2o \"ar) 2 |sngo0 " 90 " sin20 002
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= o (TQE)_WLZ’ (6:3.6)

and notice that the part which involves the derivative in the angles is nothing
but the angular momentum squared, cf. Eq. (5.1.12). A Hamiltonian of the form
(6.3.5) therefore commutes with all three components of angular momentum and
of course also with angular momentum squared.

If we have to deal with a rotationally invariant Hamiltonian, and want to
look for its eigenfunctions, we can select those which are at the same time also
eigenfunctions of angular momentum (of the square and of one of its components).
We have therefore to solve the following three equations simultaneously:

Hd)ﬁm(ra 0, 90) = E¢€m(ra 0, 90)

L2 (r,0,0) = B+ Dapen(r,0, 0)

Lo (1,0, ) = hmae,(r,0,0) . (6.3.7)
The latter two are differential equations in the 6 and ¢ variables, and their

solution is independent of the the variable r — the eigenfunctions v, must be of
the form

Yum(r,0,0) = R(r)Y," (0, ¢) (6.3.8)
and for these the Schrodinger equation reads

{_% {iaﬁ (aﬁ) _M} ; vm} R(rY{"(0.¢) = ER(r)Y["(0,9)
(6.3.9)

and so becomes an equation for the radial part of the wave function only, which
we rewrite as

d ([ ,dR 2Mr?
— — | ———V(r)—E|R=({+1)R . 6.3.10
dr(rdr) o V) - Bl R=E+1) (6.3.10)
As in two dimensions, by exploting the rotation invariance of the Hamiltonian, we
have succeeded in transforming the eigenvalue problem for a three-dimensional
Hamiltonian into a differential equation for a function of a single variable. In fact
if we rewrite the unknown function R as u(r)/r we get the following equation for
w:

2 2 2
1
W du [V(T)+ WA D] g (6.3.11)

oM dr? 2M 72

which is nothing but a one-dimensional Schrédinger equation with an “effective
potential” Vg (r) instead of the original one:

B2 00+ 1)
2M 2

Vaa(r) = V(r) + (6.3.12)
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The extra term in the effective potential is due to angular momentum and is
called the centrifugal barrier: the higher the value of ¢, the stronger the potential
term which acts like a repulsion from the origin will be. Correspondingly, the
further away from the origin it will tend to stay. This phenomenon is the classical
analogue of the centrifugal force: if a system is in a state with a large angular
momentum, it must be rotating around the origin — in this case it will feel a force
pulling it away from the origin.

We have now simplified the problem as much as possible as long as we keep
the potential V(r) unspecified. In order to discuss the solution of the radial
equation we must give the potential explicitly. At this stage we still have one
point to discuss, and this concerns the normalization of the radial function. The
normalization condition for the wave function vy, reads

00 1 27
1:/d3x|wgm|2:/ drr2|R|2/ dcose/ do|VI? | (6.3.13)
0 —1 0

Any choice of the individual normalizations of the radial and the angular-dependent
part are fine, provided that the product of the two integrals is one. We have, how-
ever, already normalized the Y™ functions so that the angular integral of their
modulus squared is one (5.1.23). Consequently, the normalization condition for
u = rR reads

/OOO driu(r)? =1 . (6.3.14)

6.4 Two examples of rotation-invariant Hamil-
tonians

To make the discussion more concrete let us consider two examples of rotation-
invariant Hamiltonians, before considering the Hydrogen atom. The first example
is that of an infinitely deep, spherical potential well:

oo r>a

V(r) = { 0 r<a (6.4.15)

The solution of the Schrodinger equation will describe the motion of a parti-
cle confined inside a sphere of radius a. As discussed above we can write the
Eigenfunctions of the Hamiltonian as follows:

Upe(T)

wn5m<r7 97 ()0) = }/Em(ev 90) ’ (6416>

where the function wu,,(r) has to satisfy the equation:

Pune(r) _ (5(5 +1) Kz) tne(7) | (6.4.17)

dr? 72
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with k = V2MFE/h. 1If we look for solutions with ¢ = 0, then Eq. (6.4.17)
becomes identical to the Schrodinger equation for the one-dimensional infinitely
deep potential well. Not quite, because the boundary conditions for the one-
dimensional case are ¥(0) = ¥ (a) = 0, whereas in this case we apparently only
have unyo(a) = 0. But if we look at the definition of the full, three-dimensional
wave function, Eq. (6.4.16), we realize that if u,o(0) does not vanish, 1,00(r, €, )
diverges at r = 0 like u(0)/r, and it cannot represent a solution of the Schrédinger
equation. So, the radial function w,o(r) must indeed satisfy the exact same
equation as the eigenfunction for the one-dimensional infinitely deep potential
well, for which we already know the solution:

2 . /n7mx n’m?h?
Un()('f’) = \/;Sll’l (T) s EnO = W . (6418)

The case ¢ # 0 is more involved and will not be discussed here, but what we can
immediately see is that the Eigenvalues E,, cannot depend on m, which means
that they will have a 2¢ + 1 degeneracy.

The second example we consider is the three-dimensional harmonic oscillator,
whose potential is given by:

1
V(r) = gMw™r®, = a4yt 427 (6.4.19)
Writing the solution as in Eq. (6.4.16), the radial function must satisfy the equa-
tion:
h? d? 1 200+ 1
S YO R i )

oM dr2 2 SN2 Une (1) = Engine(r) (6.4.20)

Also in this case we concentrate on the case ¢ = 0, for which the equation reduces
to the one for the one-dimensional harmonic oscillator. But also in this case we
have to impose as boundary condition u,o(0) = 0, which is satisfied only for the
solutions with n odd. We conclude that Eigenfunctions and Eigenvalues for ¢ = 0
have the form

Uno(T) = \/%Hn(ﬁ)e_g/2 Eno =hw(n+1/2), fornodd, (6.4.21)
with o = (Mw/7h)Y* and ¢ = r\/Mw/h. This implies that the ground-state
energy is Fjp = 3/2hw. The case ¢ # 0 is more complex and will not be discussed
here. But we cannot hide from the reader that in this case there is a much simpler
way to get to a complete analytic solution which does not rely on rotational
symmetry. The key observation is that the Hamiltonian of the three-dimensional
harmonic oscillator can be written as the sum of three one-dimensional harmonic
oscillators:

1 1 1
Vir) = §Mw2x2 + §Mw2y2 + §Mw222 ) (6.4.22)
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which implies that the Eigenfunctions can be expressed as product of the three
one-dimensional Eigenfunctions:

T/JN(% Y, Z) = 2ﬁnz (x)l/}ny <y>wnz (Z) ) (6'4'23>

and the Eigenvalues as sum of the three one-dimensional Eigenvalues

EN:hw(nz—irl%—nijl—l—nz—irl):hw(N+§) , (6.4.24)
2 2 2 2

which confirms that the ground-state energy is equal to Ey = 3/2hw. This
formula, however, provides also all higher eigenvalues and their degeneracy level,
and in an easier way than by exploiting rotational invariance. A useful exercise
is to recast Eq. (6.4.23) in the form (6.4.16) and to explain the degeneracy level
in terms of angular momentum states.
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Chapter 7

The Hydrogen atom

The Hydrogen atom is the simplest atom in nature. It consists of a nucleus
made of a single proton and an electron. To describe such a system we need a
wave function of two position variables, each of which is three-dimensional. The
(time-independent) wave function has the form

P = Y(Xp, Xe) (7.0.1)

where X, is the position in space of the proton (electron). If we take the modulus
squared of this wave function and multiply it by the infinitesimal volume elements:

0 (%p, Xe) PPy d e (7.0.2)

we obtain the probability of finding simultaneously the proton in the infinitesimal
volume d®z, around the point x, and the electron in the infinitesimal volume
d3z, around the point x.. Integrating the modulus squared over a finite volume
in either of the two variables, one gets the probability to find either of the two
particles inside that volume, while the other is at a given point in space. In
particular the integral

/d?’:lrp]w(xp, X, ) [2dx, (7.0.3)

gives the probability of finding the electron within an infinitesimal interval dz,
centered at x. independently of where the proton is.

7.1 Separation of the center of mass from the
relative motion

Before we start to solve the Schrodinger equation, we first remark that the
Coulomb potential, which describes the force among the proton and the elec-
tron, depends only on the distance among the two particles:

e? 1

Vo(r) = ——= . (7.1.1)

dmegr

33
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As usual, for an isolated physical system there is no force depending on the
position of its center of mass — the latter must therefore move with constant
velocity.

We must be able to see this even in the quantum formulation of the problem,
and translate it into a property of the Schrodinger equation. The center of mass
coordinate is:

MeXe + MpX
R=—“—° 7% (7.1.2)
me + My
and the relative position

r=X.—Xp, . (7.1.3)

The Hamiltonian of the Hydrogen atom reads

2 2
A A Ve (7.1.4)

2me
and can be rewritten in terms of the Laplacians of the variables R and r as follows

h? h?

where M = m, + m, and u = mem,/M is the so-called reduced mass which,
when one of the two masses is much larger than the other, is almost equal to
the mass of the light particle. In this case m, ~ 2000 m., and therefore y =
me/(1 4+ me/my) ~ me/(1.0005) ~ m,.

The total wave function can therefore be written as a product of two functions,
one which depends on the center-of-mass position only, and one which describes
the relative motion:

Yy = Yeu(R)Y(r) . (7.1.6)

The Hamiltonian is invariant under translations of the variable R and therefore its
eigenfunctions can be chosen to be simultaneous eigenfunctions of the momentum
of the total momentum P = p. + p,. In other words ¢y, is the wave function
of a free particle and the expectation value of its momentum is conserved.

7.2 Schrodinger equation for the relative mo-
tion — radial equation

The wave function ¢(r) contains the interesting dynamics of the system. This is
a solution of the following equation

_gw@ + Volry(r) = Bu(r) (7.2.1)
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Since this Schrodinger equation is invariant under rotation, we can immediately
apply the conclusions of the previous chapter and write the solution as a product
of a radial function times the eigenfunctions of angular momentum:

ug(r)

Ve (T) = TYZ”(G,so) : (7.2.2)
The radial equation then reads!
d?u [2mee* 1 (({+1) N
rACY - = = 7.2.3
dr? + [47reoh2 r r2 ] v=Rus ( )

where kK = /—2m.E/h is defined for the case of negative energies, i.e. energies
corresponding to bound states, which are the only ones relevant for atoms. We
now simplify the notation by dividing the equation by x? and introducing the
variable p = kr:

d*u po  L(L+1)
—=(1-— 7.2.4
dp? ( b ) (7:2.4)
where ) )
mee
= 2.
po dreoh’k (7.2.5)

In the limits of p — oo and p — 0, the equation takes the following forms,

respectively:
d*u v (0+1)

d_p2 =u, d_p2 = p2 u (726)
whose solutions are
p — 00 = wu~e’
p—0 = u~ptt (7.2.7)

We factorize these two functions out of u, thereby explicitly showing the dominant
behaviour at the two extrema of the r region:

u=epu(p) | (7.2.8)
and translate Eq. (7.2.4) into an equation for v. The latter reads
pv"(p) +2(0+1 = p)v'(p) + (po — 2(¢+ 1))v(p) =0 . (7.2.9)

We now express v(p) as a power series:

v(p) = Zcipi : (7.2.10)

'To simplify the notation we drop the subscript E on u in what follows and approximate
the reduced mass by the one of the electron.
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and rewrite (7.2.9) as an equation for the power series:

i [@'(i—i—l)ciﬂ—|—2(€+1)(i+1)ci+1 — 2ic; + (po — 2(0 + 1))@],)@‘ —0 . (7.2.11)

i=0
The power series vanishes only if all the coefficients vanish, and this means that
we obtain a recursive equation for the coefficients ¢;:
20+ L+ 1) — po
Cit1 = N~ Ci -
2(+1)+)(i+1)

(7.2.12)

We seem to have obtained what we wanted—an explicit solution of the radial
equation—Dbut we first should check that the power series has an acceptable be-
haviour at infinity?. The behaviour at infinity is dictated by the behaviour of the
coefficients ¢; for large i. This we can read off from (7.2.12) by neglecting any
constant term compared to i. We then get:

2 21

i1 = ——~C = i = —Co 7.2.13
Ci+1 (Z+1)C c Co ( )

which means that at large p the function v goes like:
—00 ‘ i
v(p) = ¢ Z P = coe® (7.2.14)
i=1

and so destroys the correct behaviour at infinity that we had built into the defi-
nition (7.2.8) of the function u. Unfortunately, the solution we have found is no
solution at alll The only way out is if the recursion relation (7.2.12) terminates
for a certain value of ¢, which we call i,,,,. Namely if

2n = 2(imax + L+ 1) = po . (7.2.15)

This condition means that we can make sense of the solution we have found in the
form of a power series only if py is twice an integer. This determines completely
the eigenfunctions of the Hamiltonian for the Hydrogen atom.

7.3 The spectrum of the Hydrogen atom

Since py depends on the energy, Eq. (7.2.15) is a quantization condition for the
energy of the Hydrogen atom. Indeed it can be written as

e

S 32m2n? 2R \4me) n? 2 n2

20bviously, at p = 0 the power series converges to cp, so there is no danger there.
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where a = e?/(4meghc) ~ 1/137 is the fine structure constant.
The ground state of the Hydrogen atom is obtained by setting n = 1. The
eigenvalue of the energy is in this case

MeC?

B, =— a®=-13.6eV . (7.3.2)
With n = 1, Eq. (7.2.15) implies that ipn.x = ¢ = 0. In the transition from
the excited to the ground state the atom emits light, one single photon in each
transition. Conservation of energy and the de Broglie relation between energy of
the photon and frequency of the electromagnetic wave implies that

AE = E,, — E,, =hv | (7.3.3)

where n; r are the principal quantum number of the initial and final state of the
atom. The wavelength of the emitted photons reads

c  he he [ ninj

The constant R = —FE,/(hc) = 1.09737316 - 10" m~! is called the Rydberg con-
stant and has the dimension of the inverse of a length. A number of possible
transitions are shown in Fig. 7.1. Transitions in the Lyman series are in the
ultraviolet, those in the Balmer series in the visible and those in the Paschen in
the infrared.

Once the energy eigenvalues are fixed, the wave function is completely deter-
mined. To show this explicitly, we first of all rewrite x, which has dimensions of
the inverse of a length as

1 Amegh?
Kk = — where a= 5
an mee

=0.529-10""m | (7.3.5)

is the so-called Bohr radius. Indeed the latter length scale is a good measure
of the size of an atom, as we can see by writing the wave function, e.g. of the
ground state, as

P100(r) = 1@e_’”/“YO(G ) = De=rfa — Le_r/a (7.3.6)

100 r a 0 ) a m ) sJe

where we have fixed the constant ¢y by the normalization condition. In the ground
state the wave function has no angular dependence, and the only dependence on
the radius is in the exponential. The probability to find the electron within a
distance d from the proton is given by

1 d 1 2w
P(d) = / drr2e_2’"/“/ dcos&/ dp=1— (14 2z +22%)e > (7.3.7)
0 - 0

wa’ 1
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Figure 7.1: The spectrum of the Hydrogen atom and a few of the transitions
among the lower levels, grouped into “series” labeled by the names of the spec-
troscopists who first discovered them.
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Figure 7.2: Probability distribution to find the electron at a distance r from the
nucleus in the ground state of Hydrogen.

where z = d/a. Numerically, P(a) = 0.32, P(2a) = 0.76 and P(3a) = 0.94: the
wave function of the electron is almost all contained within a sphere of radius of
a few Bohr radii. We can read Eq. (7.3.7) also in the following way: we sum up
the contributions of all the spherical layers of radius r up to a radius of d. The
contribution of each layer is given by the integrand and is equal to 72|R,.(r)|?.
The plot of the latter for n = 1, £ = 0 is shown in Fig. 7.2. The maximum of
the probability is at » = a, as can be easily shown analytically: it is enough to
take the derivative with respect to r of the integrand in (7.3.7) and see that this
vanishes at r = a.

Another measure of the radius of an atom is given by the expectation value
of the radius. This is equal to:

(rYpe = /de T | Unem|? = /OO drr®|Rue(r)]? (7.3.8)

0

where we have dropped the angular integral as follows from the normalization
condition (5.1.23) of the Y;™ functions. The general form of the radial part of the
eigenfunctions 9,4, is fully known analytically and is given by

2\** [(n—t—-1) 2\
= | — A2 ) -r/na L2€+l 9 3
Ho (n) 2nl(n+ O (n) i @r/na) o (7:39)
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where L are the associated Laguerre polynomials defined as

Ly ,(x)

(—1)7 (%)pl)q(a}) (7.3.10)

with L, the Laguerre polynomials

Ly(z) =¢€" (%)q (e"2?) . (7.3.11)

The calculation of the integral in Eq. (7.3.8) is quite nontrivial, but the result
beautifully simple:
a

(rYne = 3 [3n® — (0 +1)] . (7.3.12)
For example (r)19 = 3/2a is 1.5 times larger than the maximum of the distribution
— evidently the “size” of the atom depends on how one defines it. For higher n’s
the maximum of the distribution is no longer a good way to define the size of the
atom, because the functions R,, have zeros and correspondingly many maxima
and minima. The expectation value of r is in this case a much better way to
measure the size of the atom. Eq. (7.3.12) shows that the size grows very fast
with n.

7.4 Fine and hyperfine effects in the spectrum
of the Hydrogen atom

The spectrum of the Hydrogen atom as given in Eq. (7.3.1) has been verified
experimentally to great accuracy. As soon as one goes below the level of the
permille precision in the measurement of the wavelengths of the emitted photons,
however, one starts to see small discrepancies from the predicted spectrum. The
origin of these discrepancies is well understood as we are now going to discuss
briefly here.

7.4.1 Relativistic kinetic energy

In the derivation of the Schrodinger equation it is assumed that the particles
move at a speed much smaller than the speed of light. The corresponding kinetic
energy is then the classical one, Ty = p?/2m.. No matter how small the speed
of the particle, this expression is only an approximation to the full relativistic
theory, in which the kinetic energy is given by

T = \/(m662)2 + (pQCQ) - mec2 . (741)
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To see how good an approximation the classical expression for the kinetic energy
is, one should expand T, in inverse powers of ¢ and compare the size of the
next-to-leading term to the leading one:

P>  (p?)

T = -
2me  8mic?

(7.4.2)

In quantum mechanics the second term should be interpreted as an operator
(substituting p with the corresponding operator p) and added as a correction to
the Hamiltonian, which will be written as

ﬁz%+ﬁ‘%%.&z~gﬁ (7.4.3)
8m3c?

and Hy is the Hamiltonian appearing in Eq. (7.2.1). Having a new Hamiltonian,
the problem to find the corresponding eigenfunctions and eigenvalues is a com-
pletely new one. If, however, one can show that one part of the Hamiltonian is
“large” compared to another one, the eigenvalue problem can be solved pertur-
batively, and the eigenvalues be given as a power series in matrix elements of the
“small” Hamiltonian. Details of perturbation theory will be discussed in QTTII.
For the present discussion it is enough to say that the shift in the eigenvalues to
first order in the “small” Hamiltonian is given by the expectation value of the
perturbation in the unperturbed states:

AE, = (nfm|H|ntm) . (7.4.4)

The ratio AE,, /E,, can be estimated to be of the order of ~ (Za)? = Z20.5-10~%.
The analytic calculation gives

mmmmmpﬂﬂ?)b;ﬂ—%}. (7.4.5)

Notice that the perturbation H; lifts the degeneracy in the angular momentum
by introducing a dependence of the eigenvalues on ¢.

7.4.2 Spin-orbit coupling

Another small perturbation of the main Hamiltonian is due to the so-called spin-
orbit coupling. Its origin can be explained as follows: if one sits on the electron
one will see the nucleus rotating around it, and therefore generating a magnetic
field. The latter will be proportional to the angular momentum of the state in
which the atom is. The spin of the electron will then couple to this magnetic
field through a scalar product, as usual. A careful derivation of this effect yields

- 1 S Lgdgb(?“)

Hy = — :
2 2m2c? r o dr

, (7.4.6)
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where ¢(r) is the electrostatic potential due to the nuclear charge, and the factor
of two in the denominator is a subtle relativistic effect first explained by Thomas
(and goes under the name of Thomas precession). Again the effect of this inter-
action to the energy levels is given to first order by its expectation value in the
eigenstates of the main, unperturbed Hamiltonian H,y. The order of magnitude
of this effect is again E,(Z«)?. The combination of the two shifts can be written
in a nice compact form — the effect of the latter perturbation is simply to change
¢ — j in Eq. (7.4.5), where j fixes the eigenvalue of the total angular momentum
J=L+S:

2
AE = 5,2 { LN 3] . (7.4.7)
n |j+1/2 4dn
Since we are discussing one-electron states we have j = £+ 1/2. Two states with
the same n and ¢ differing by one unit end up having the same energy if the
spin of the electron points in two different directions such that j is the same.
For example the state n = 2, £ = 0 has s = 1/2 and also j = 1/2, whereas the
state with n = 2 and ¢ = 1 generates two different states with j = 3/2,1/2.
These states are conveniently identified with the spectroscopic notation given by:
2st1[;, where L represents a letter which identifies a value of ¢: S for £ =0, P
for ¢ =1, D for ¢ = 2, F for ¢ = 3 and so on following the alphabetical order.
With this notation we can say that even after taking into account the relativistic
effects giving the fine structure of the spectrum, the states 251/, and 2Py 9, e.g,
are degenerate.

A very precise experiment carried out by Lamb and Retherford in 1947 de-
tected a very small difference in the latter two energy levels. The effect goes under
the name of Lamb shift, and can be understood in the framework of quantum
electrodynamics. The effect is of order m.c*(Za)*aloga and is almost another
three orders of magnitude smaller than the fine splitting effects discussed above.
At this level of precision there are yet other effects which also come into play, like
the coupling of the spin of the electron to the spin of the nucleus, which however
we will not discuss any further. These effects, of the relative order of 1076 are
called hyperfine splitting effects and have also been seen experimentally and well
understood theoretically.



Chapter 8

Identical particles and the
Helium atom

8.1 Identical particles, Pauli exclusion principle

Before considering multielectron atoms, we need to ask ourselves how to treat
identical particles in quantum mechanics. In classical mechanics, even if two
particles have exactly identical physical properties, as soon as I have different
initial conditions between the two, the solution to the equations of motion will
allow me to distinguish them. In quantum mechanics I cannot know where exactly
each particle is at any given time. All I can ask myself is what is the probability
to detect one particle with certain physical properties at a certain point (or small
region) in space, at a certain point in time. If no measurement allows me to
distinguish between the two particles the probability has to be the same whether
I detect particle n. 1 or particle n. 2. If I define the coordinates of the two
identical particles 7; with ¢ = 1,2 the wave function describing the state of the
two particles must satisfy:

U (2, )2 = |U(Za, 7). (8.1.1)

Which means that at the level of wave function the only possible change after
switching the two particles’ coordinates is a phase factor:

P\I/(fl,fg) = qj(fg,f1> = nqj(fl,fg> 3 (812)

where P is the operator which exchanges the two particles and 1 a phase factor:
In|> = 1. The square of the P operator, on the other hand, is the identity,
and therefore > = 1, n = 1. One could in principle imagine that the wave
function of two identical particles treats them differently — is not an eigenstate
of P — but that we simply have no way of distinguishing the two particles. It
turns out, however, that we can correctly describe Nature only if we assume
that this cannot happen, and that the wave function describing two identical
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particles is either symmetric (n = +1) or antisymmetric (n = —1) under the
exchange of the two particles. Moreover whether one has to take symmetric
or antisymmetric wave functions is not a matter of choice or dependent on the
situation: it depends only and strictly from the spin of the particle. Particles with
an integer spin are described by symmetric wave functions (and are called bosons),
whereas particles with half-integer spins admit only antisymmetric wave functions
(and are called fermions). This is the content of the “spin-statistics theorem”,
which can be proven only in quantum field theory (in quantum mechanics it
needs to be assumed as a principle) and was first established by Wolfgang Pauli.
Historically, he first formulated the “exclusion principle” which goes under his
name and which states that two electrons cannot be in the same state, and later
generalized it to a theorem.

8.2 The Helium atom

Having established Pauli exclusion principle, we can now consider multielectron

atoms, and in particular the simplest of them, the Helium atom. Its Hamiltonian
reads

h? 2e? 1 2e? 1 e? 1

Hie = — (A + Dg) — —— — —, (8.2.3)

2m, dmegry  4dmegry  4Amegria

where r; 5 are the position vectors of the two electrons (the center of the coordi-
nate system being on the nucleus) and ry; = r; — ro, and as usual r; = |r;|. If we
ignore the repulsive interaction among the two electrons, we get an Hamiltonian
which we can solve exactly: the Hamiltonian is the sum of two hydrogen-atom
Hamiltonians, each with Z = 2. The eigenfunctions are given by products of
eigenfunctions of the Hydrogen atom (with Z = 2), namely:

VO (e, r2) = 0 (), (r2) (8.2.4)

This would be the solution if the two electrons were distinguishable, but since
they aren’t, we need to build an antisymmetric wave function out of this. This
is easy to do, in particular because the eigenfunctions of the Hamiltonian of the
hydrogen atom are orthogonal to each other:

1?(—0) (r17r2) = % [ 5126127)’11 (rl) 5222227712 (1‘2) - wri:efml (r2>w52:€22m2 <r1>] . (825>

This is not the whole story, however, because we are forgetting the spin degrees
of freedom for the electron, but they are integral part of the wave function and
also play a role in the exclusion principle: two electrons cannot be in the same
state including their spin state! So the complete set of all possible solutions for
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the Helium atom (still in the approximation in which we ignore the repulsive
interaction among the two electrons) looks as follows

OO (2, 513 29, 50) = 0 (01, 12) x5 (51, 52) (8.2.6)

where 1/153) is the symmetric combination of products of hydrogen wavefunctions
(like in Eq. (8.2.5), but with a + sign in between), and x+(s1,s2) are the anti-
and symmetric combinations of spin wavefunctions (s; is the spin projection on
the z axis of the i-th electron). A quick look at Sec. 5.3 allows us to conclude
that the symmetric spin wave functions of two electrons are those of total spin 1,
and the antisymmetric one is that of total spin 0:

v {\ 15 1)+ mmw} — (). 100,11 — 1}

1
X =5 It =1 ) ~ [00) (8.2.7)

Based on this discussion we can conclude that the ground state of the simpli-
fied Hamiltonian reads

\Ifﬁ)i,l(fl, 513 T2, S2) = 1/J(()0)(I“1,1‘2)|00> (8.2.8)
where 5
O = = — 11T a
0" (0, 12) = 0I5 ()i (1) = —ge 2l (3.09)
0

In the following discussion we will ignore the spin part of the wavefunction which
plays no role. The energy eigenvalue (of the simplified Hamiltonian) in the ground
state is given by Eéo) =2.7°FE, = —8-13.6 eV = —109 eV, which is quite a
bit lower than the measured ionization energy (the energy needed to take both
electrons to infinity) of Helium, which is —79 eV. Ignoring the positive contribu-
tion of the repulsive term is certainly a bad approximation. We can, however,
immediately improve our estimate by using the function (8.2.9) and evaluate the
expectation value of the full Hamiltonian (8.2.3) in this state:

(0) e? 1
(W8 Huelt”) = 8B + <—> : (8.2.10)

47T€0 12

The calculation of the latter expectation value is simple (cf. the paragraph at
the end of this subsection) and yields

1 5
— )= — 8.2.11
<> = (8.2.11)

so that the expectation value of the energy is

) 11
<'¢(()0)|HHe|¢(()O)> — 8E1 _ §E1 = ?El = —-75¢eV , (8212)
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which is already quite a good approximation to the true energy.

As we will learn next semester, it is possible to improve our estimate of the
ground state energy (by at the same time improving the approximation for the
wave functions), by not fixing the paramater Z = 2 in the wave function (8.2.9),
but rather leaving it free to float. Applying the so-called variational principle we
will use a procedure to optimize the choice of this parameter Z and get as close
as possible to the true ground state wavefunction and energy. Anticipating the
outcome here: the optimal value is Z = 27/16 ~ 1.69 which indeed shows that
each electron sees the charge of the nucleus somewhat screened. Putting this
back into the expectation value of the energy (as a function of Z), we obtain

_ 1 6
B(Z) = (g) Ey =-T75eV | (8.2.13)

which is indeed very close to the correct energy — the overestimate is only by 2%

Calculation of (ry;)
We want to calculate
Z3 2 e—QZ(Tl-I—TQ)/ao
—1\ _ 3.. 13
= — d’rid’rg—m . 8.2.14
(r12) (Wag) / rjary 1y ( )

We start with the integral over ro and choose to align the third component of the
coordinate system to r;. We then have

672Zr2/a0

d’ry — =27 / dryrae= 272/
\/7’1 + r5 — 21179 cos Oy

1
1
X / d cos 0y —
1 /1?2 + 13 — 219 cos Oy

1
=27 / dryrie22r2/ao___ (\/7’% + 72+ 2ryrg — \/r% +ri— 27“17’2)
172
1
= 271_/6[7,27,56227«2/%_ [(7‘1 +71) — | — 7’2@
172

1 r1 0
=47 (—/ dr2r§e_22”/“°+/ drgrge_QZ”/“O>
1 Jo 1
3
0

_ ma {1 _ <1+@) 62Zr1/a0:| : (8.2.15)

Qg

where the next-to-last equality sign follows because (r; + 19) — |[r1 — ro| = 2r9
(2ry) if r1 > ro (ro > r1). We now have to evaluate the integral over r;. The
integrand does not depend on any angle, so that the angular part of the integral
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is trivial, and gives 47. We only have to calculate the radial integral:

Z3 00 7
(re) = (—3> 47T/ dryrq [1 — (1 + i) 6227«1/(10} o—22r1/a0
Tag 0 ag

73 5a2 57
= 4 o — == 8.2.16
(71'&8) " 3222~ 8ag ( )

8.3 Free electron gas

In order to illustrate the relevance of the Pauli exclusion principle in the physics
of condensed matter we briefly discuss a simple model, the free electron gas, i.e.
a gas of free fermions, confined in a rectangular box. This has been historically
proposed by Sommerfeld as a model for metals. One can imagine that on the
average, the Coulomb attraction due to the ions (which are sitting almost steady
at the sites of a three-dimensional lattice) and the Coulomb repulsion due to the
delocalized electrons compensate each other inside the metal — the delocalized
electrons, on the other hand cannot escape from the metal.

We already know the energy eigenfunctions for such a Hamiltonian, defined
by an infinite potential well in the three directions, with lengths ¢,, ¢, and /..
The wave function (imposing for convenience periodic boundary conditions, i.e.
W(x + ;) = (x) in each direction) has the form:

1 s
x,Y,2) = ————=e""" 8.3.17
U(z,y, 2) T ( )
where
- Ng Ny N
k=2r|-2 -2 2= 8.3.18
W(EI’&,’@) ’ (8.3.18)
with ng,, n, and n. three integers. The corresponding energy eigenvalues are:
2k
E = . 8.3.19
o ( )

For a gas of bosons each of the many particles will be in a certain energy state,
with an average kinetic energy proportional to the temperature. If we decrease
the temperature to zero all the particles will decrease their energy, until all of
them will be in the ground state. The total wave function will be symmetric
under the exchange of any two particles, but apart from that there is no other
constraint to be considered.

In case of fermions at zero temperature, the Pauli exclusion principle forbids
all particles to be in the ground state. After we have put there two particles (we
consider for definiteness spin 1/2 particles), one with spin up and the other with
spin down with an antisymmetric spin wave function, the third one has to be in
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a state with |7]| = 1. In this energy level we have room for twelve electrons, and
then again we have to put the fifteenth electron in a higher energy state. If we
have about 10?® particles, it does not make sense to continue the counting in this
way, but it is more convenient to replace the sums by integrals. If we integrate
in the space of momenta over a sphere of radius kr and divide by the volume
occupied by one state, Vi = (27 /4,)(2n/¢,)(27/¢,), and multiply by two (to take
into account the two possible spin states), we get the total number of particles

by 0y, 0 hr V 8 v
_ 2y 2 9y dkk? = — 3 = k3. 8.3.20
2m 2 27 7T/O gm3 3 L 3p2F ( )

kr, the maximal momentum of an occupied state, is called the Fermi momentum.
This equation provides a direct link between the density (number of electrons
divided by the volume) of electrons and the Fermi momentum:

K

=53 - (8.3.21)

p
We can then calculate the average energy of this gas of free electrons by multi-
plying the integrand in (8.3.20) by the energy for a fixed momentum and dividing
by the number of particles

E (37%p)% . (8.3.22)

B _ 1V /’“ O L S
N N w2, 2m.,  10m.  10m,

While for a free gas of bosons the average energy at zero temperature is constant
and coinciding with the ground state energy of a single particle, for electrons
the energy grows with the 2/3 power of the density. In particular, for a constant
particle number, the average energy is inversely proportional to the volume (the
2/3 power thereof) — this means that a gas of free electrons exerts a pressure on
the walls of the box in which it is confined. This pressure is easy to calculate:

_dEtot - 2 Etot - h2

2 \5/3
WV 3V 5o (3mep)°e . (8.3.23)

P =




Appendix A

The Einstein-Podolsky-Rosen
paradox and Bell’s inequalities

A.1 The Einstein-Podolsky-Rosen paradox in Bohm’s
formulation

At the end of our discussion of the basic aspects of quantum mechanics and after
having seen how it works, we can now come back to the question of what it
means and spend some time to decide whether it is a puzzling theory or not. We
do this by discussing an apparent paradox discussed by Einstein, Podolsky and
Rosen in 1935 [6], in the form it was formulated later by Bohm in 1952 [7]. I
say “apparent” because if one takes the view that quantum mechanics correctly
describes the reality, then there is no paradox at all, but if we take the a prior:
view of Einstein and collaborators of what the reality is, then quantum mechanics
is indeed paradoxical: the conclusion of Einstein et al. was that there must be an
underlying, more complete theory, and that quantum mechanics is “incomplete”.
In the formulation of Bohm one considers the decay of a neutral pion into an
electron-positron pair (the so-called Dalitz decay): 7 — e*e~. Since the pion has
spin zero and angular momentum is conserved, if we look at the decay of a pion at
rest we must find that the total angular momentum of the electron-positron state
is also zero. Momentum conservation implies that they fly in opposite directions
and that their orbital angular momentum is zero. Their spins must therefore be
aligned in opposite directions. Not only that: they must be in a singlet state
of the total spin. As shown in Sect. 5.3 this state is given by (the first arrow
indicates the spin of the electron and the second the one of the positron):

1
V2

Note that we have not written the x-dependent part of the wave function, which
has to describe the fact that the two particles are moving away from each other

00) = —= ([ 1h) = [I1) - (A.1.1)
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with a certain speed so that, if one waits long enough, will be found away from
each other by any distance. If we now make a measurement of the z component
of the spin of the electron with detector A and get +%4/2, the wave function of
our system will collapse into

1) . (A.12)

This is what we have learned to be the description of nature provided by quantum
mechanics. If we think about it, however, we do see that it is not something
which is easy to swallow: before the measurement at the detector A were made,
a detector B at a certain distance (as large as we want, if we wait long enough)
from detector A, and ready to measure the z component of the positron spin
would have had 50% probability to get +1' and 50% to get —1. Immediately
after the measurement the probability suddenly become 0 and 100% respectively.
This has been tested experimentally many times and is so beyond any doubts.
The quantum mechanical interpretation of such an experiment is that the change
of a state of a physical system happens instantaneously no matter how large the
extension of the physical system is. Apparently this violates the principle that
signals may travel at most with a speed of light (of course, in this case one would
have to argue whether there is any “signal” travelling instantaneously). Einstein,
Podolsky and Rosen found the standard interpretation of quantum mechanics
unacceptable — in their view it would collide with the concept of “reality”. The
only way out, for them was that quantum mechanics is an incomplete theory and
that there must be an underlying (to us yet unknown) theory which properly
describes the “reality”. In particular there must be a hidden variable which fixes
the sign of the spin of each particle at the moment in which they are created. The
formalism of quantum mechanics has been created on the basis of our ignorance
of such a variable.

A.2 Bell’s inequality

In 1964 Bell [8] showed that the question whether the standard quantum me-
chanical interpretation is correct or whether there are hidden variables can be
answered experimentally. If one assumes the existence of hidden variables and
consider a variant of the EPRB paradox, one can show that an inequality must
hold. Such an inequality, on the other hand is violated in quantum mechanics.
Let us see how.

What Bell proposed is to measure the component of the two spins with detec-
tors A and B along two different directions, identified by the unite vectors a and
b. Repeating the measurement many times one can measure the average of the
product of the two spins, which we indicate with P(a,b). In quantum mechanics
this is the expected value of the product of the two measurements in the state

'From now on we speak about 41 as possible results of spin measurements instead of 4-h/2.
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(A.1.1) and is given by:

(SW - a)(S? - b)) = a't/ (S 5P . (A2.1)

J

It is easy to show that in the state (A.1.1) the expectation value of the product

of any two components of the two spins is equal to (Si(l)Sj(-Q)> = —h%/46,;, and
therefore: )

(SW . a)(S? . b)) = —hza-b . (A.2.2)

If we have a hidden variable A, then the result of the measurement at A (B)

is given by A(a, \) (B(b,\)). As it is known experimentally the results can only

be +1 and these are the only values that the two functions A and B can take.

They must also satisfy the property that if a = b then the results are perfectly

anticorrelated:
A(a,\) = —B(a,\) . (A.2.3)

In this theory we can also evaluate the average of the two measurements
Plab) = [ dy() AN BbA) = [ b, A NAbA) L (A2

where p is some probability distribution which satisfies the property [ dAp(\) = 1.
Bell then suggested to consider the projection of spin onto a third unit vector
c and subtract the two averages

P(a,b) — P(a,c) = —/d)\p()\) [A(a, \)A(b, A) — A(a, \)A(c, A)]
. / dAp(A) [1 — A(b, ) A(c, \)] Aa, \)A(b, \) . (A.25)

where the last step follows from A(b, \)? = 1. Since —1 < A(b, \)A(c, \) < 1 the
part between square brackets in the integrand in (A.2.5) is positive. The same
holds for the probability distribution p(\). If we take the modulus of both sides
of Eq. (A.2.5) and use Schwarz inequality we end up with

|P(a,b) — P(a,c)| < / dhp(\) [L — A(b, M A(c, )] (A.2.6)

which can be rewritten as
|P(a,b) — P(a,c)| <1+ P(b,c) . (A.2.7)

In deriving this inequality we have used nothing but the positivity property of the
probability distribution and the fact that the outcome of the spin measurements
can be only 1. This means that the inequality is absolutely general: if there exist
a hidden variable which determines the outcome of the spin measurement then the



102 APPENDIX A. EPR PARADOX AND BELL’S INEQUALITIES

inequality must hold. The inequality, on the other hand, is violated in quantum
mechanics as one can easily show by takinga-b =0and a-c=b-c = 0.707,
i.e. taking the vector c to be at 45° from both a and b. Plugging in the numbers
for this configuration for the quantum mechanics case we get:

la-b—a-c/]<1-b-c i.e. 0.707 < 1—-0.707 . (A.2.8)

The conclusion is that any hidden variable theory is incompatible with quantum
mechanics and that which of the two theory is realized in nature is a question
which can be settled experimentally, because these averages can be measured.
The first such measurement was made by Aspect, Grangier and Roger [9] in
Orsay and gave a result in perfect agreement with quantum mechanics. From the
result we have to conclude that the world we live in displays nonlocal phenomena
like the one that Einstein, Podolsky and Rosen found absolutely paradoxical.
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