Effective Field Theory

5th Exercise Sheet

6 SU(N) gauge theory

- 1. Show that the unitarity of the SU(N) matrices entails hermiticity of the generators and that the requirement det U=1 implies that the generators have to be traceless.
- 2. Show that the structure constants f_{abc} of SU(N) are real and fulfill the Jacobi identity

$$f^{abd}f^{dce} + f^{bcd}f^{dae} + f^{cad}f^{dbe} = 0$$

This identity can be obtained by considering the Jacobi identity

$$[[A, B], C] + [[B, C], A] + [[C, A], B] = 0$$

for the generator matrices T^a and rewriting the commutators in term of structure constants using their defining relation

$$[\mathbf{T}^a, \mathbf{T}^b] = i f^{abc} \, \mathbf{T}^c \,.$$

3. Show that the conjugate representation

$$T^a_{\bar{N}} = -(T^a)^T = -(T^a)^*$$

and adjoint representation

$$(T_A^a)_{bc} = -if^{abc}$$

are indeed representations of SU(N). What is the conjugate representation of the adjoint representation?

- 4. For a representation T_R^a of a Lie group, the quantity $C_R = \sum_a T_R^a T_R^a$ is called the quadratic Casimir operator of the representation.
 - (a) Show that this quantity commutes with all generators $[C_R, T_R^b] = 0$. For an irreducible representation Schur's lemma then implies that the operator is proportional to the unit matrix $C_R = C_R \mathbf{1}$.
 - (b) Compute the values of C_F and C_A , the Casimir invariants of the fundamental and adjoint representation, respectively, i.e.

$$T^a T^a = C_F \mathbf{1}$$
, $f^{acd} f^{bcd} = C_A \delta^{ab}$.

Remember that we normalized

$$\operatorname{Tr}(\boldsymbol{T}^a \boldsymbol{T}^b) = T_F \, \delta^{ab} = \frac{1}{2} \delta^{ab} \,.$$

For C_A , show first that

$$f^{acd}f^{bcd} = 4\operatorname{Tr}(C_F \mathbf{T}^a \mathbf{T}^b - \mathbf{T}^a \mathbf{T}^c \mathbf{T}^b \mathbf{T}^c)$$

and simplify the last term using

$$T_{ij}^{a}T_{kl}^{a} = \frac{1}{2} \left(\delta_{il}\delta_{jk} - \frac{1}{N}\delta_{ij}\delta_{kl} \right),$$

which follows when considering the decomposition of a general $N \times N$ matrix into the unit matrix and T^a .

7 "Magic relation" for the anomalous dimension

In this problem we provide arguments for the "magic relation"

$$\gamma = 2\alpha_s \frac{\partial Z_1}{\partial \alpha_s} \tag{1}$$

between the anomalous dimension γ and the first term Z_1 in the ϵ expansion of the Z factor

$$Z = 1 + \sum_{k=1}^{\infty} \frac{1}{\epsilon^k} Z_k(\alpha_s),$$

as it holds in the $\overline{\rm MS}$ scheme in dimensional regularization.

1. We first need the β function in d dimensions. To this end, use that $\mu \frac{d}{d\mu} \alpha_s^{(0)} = 0$, with bare coupling $\alpha_s^{(0)} = Z_g^2 \mu^{2\epsilon} \alpha_s(\mu)$ to show

$$\beta(\alpha_s, \epsilon) = -2\epsilon \alpha_s - 2\alpha_s Z_g^{-1} \mu \frac{d}{d\mu} Z_g.$$

2. Now write $\beta(\alpha_s, \epsilon) = \beta(\alpha_s) + \sum_{k=1}^{\infty} \epsilon^k \beta_k(\alpha_s)$, and use $\mu \frac{d}{d\mu} Z_g = \frac{\partial Z_g}{\partial \alpha_s} \beta(\alpha_s, \epsilon)$ to find

$$Z_g\beta(\alpha_s,\epsilon) = -2\epsilon\alpha_s Z_g - 2\alpha_s \frac{\partial Z_g}{\partial \alpha_s}\beta(\alpha_s,\epsilon).$$

Expanding this relation at large ϵ , you should find $\beta_1 = -2\alpha_s$, $\beta_k = 0$ for k > 1, and the first "magic relation" $\beta(\alpha_s) = 4\alpha_s^2 \frac{\partial Z_{1g}}{\partial \alpha_s}$, where Z_{1g} is the first term in the ϵ expansion of Z_g .

3. Finally, repeat the same strategy for the anomalous dimension encountered in the lecture, which should lead to Eq. (1).