
Critical Phenomena - Exercise Set 1

1) Ising 1D Exact Solution

In this question we will find the exact solution of the Ising model in one dimension. This
is a simple but illustrative example. Consider N spins si = ±1 in one dimension with
periodic boundary conditions, i.e. sN+1 = s1 and Hamiltonian

H = −J
∑
i

sisi+1 −
B

2

∑
i

(si + si+1) (1)

The partition function of the system is given by

Z =
∑

s1=±1

· · ·
∑

sN=±1

e−βH (2)

where β is the inverse temperature.

a) Show that the partition function may be written as Z = tr(TN) where the transfer
matrix T is a 2× 2 matrix. Find T .

b) Find the eigenvalues of T and therefore an explicit expression for Z.

c) Compute the magnetization m = 1
N
⟨
∑

i si⟩ in the thermodynamic limit, and show that
it is zero for B = 0. This implies that the system has no phase transition at any finite
temperature. What happens for B ̸= 0?

d) Consider the correlation function C(i, j) = ⟨sisj⟩ − ⟨si⟩⟨sj⟩. Explain why C(i, j)
depends only on the difference i − j and compute explicitly C(i, 0) for B = 0. Hint:
write the expression for ⟨sisj⟩ and repeat the steps leading to the transfer matrix in
part a). You can write ⟨sisj⟩ in terms of the transfer matrix, but two new matrices
are required.

e) In general, C(i− j) ∼ e−|i−j|/ξ/ |i− j|d−2+η where ξ is the correlation length and η is
a critical exponent. Find ξ and η. For which values of the parameters does ξ → ∞?

2) Ising 1D Mean Field Theory

As we’ve just seen, the 1D Ising model can be solved exactly. However, this is not true
for more complicated models. A technique which is often used in more complicated cases
is mean field theory, and here we will see how it works for the 1D Ising model. Consider
the same setup as in Exercise 1. Now write the interaction term in the Hamiltonian as

sisj = (si −m+m)(sj −m+m) = m2 +m(si −m) +m(sj −m) + (si −m)(sj −m) (3)

where m is the equilibrium magnetization. Under the assumption that the deviations
from equilibrium are small, the last term in (3) may be neglected.
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a) Under this approximation, compute explicitly the partition function Z.

b) Use this partition function to show that the equilibrium magnetization obeys the
self-consistency equation m = tanh (βB + βJqm), where q is the number of nearest
neighbour pairs.

c) In the case B = 0 draw an appropriate graph to show that there is a critical value βc
at which the solutions m of the self-consistency equation change abruptly. How does
this compare with the exact solution of Exercise 1?

d) In the case B ̸= 0 find the asymptotic form of the solution in the infinite temperature
limit β → 0.

e) The critical exponent β̃ is defined by the equation m(T ) = (Tc − T )β̃ in the vicinity

of Tc, where T = 1/β and Tc = 1/βc. Set B = 0 and find β̃ by expanding the self-

consistency equation in a series. Note: β̃ is usually called β, but here we added a ∼ in
order to avoid confusion.

3) Ginzburg-Landau Theory

The Ising model has a Z2 global symmetry given by flipping all the spins at once, si → −si.
Under this flip, the magnetization changes sign m → −m. In the spirit of Ginzburg-
Landau theory we may write an effective free energy

f(m,T ) = a(T ) +
1

2
b(T )m2 +

1

4
c(T )m4 + · · · (4)

by including the lowest order terms which respect the symmetry m → −m, while the
coefficients depend on the temperature T .

a) What conditions must the coefficients satisfy in order for f to be bounded below?

b) Suppose that the system undergoes a phase transition at T = Tc. What conditions
must b(T ) satisfy in order for this to occur?

c) Expand b(T ) to its lowest order, and therefore find the minimum m of the free energy
in the cases T < Tc and T > Tc.

d) Find the critical exponent β̃ as defined in Exercise 2. Does the answer agree with the
result of Exercise 2?

2



Critical Phenomena - Exercise Set 2

4) Tricritical point

This exercise is similar in spirit to Exercise 3, but a little more involved. Consider the
free energy

f(m,T ) = a(T )m2 + bm4 + cm6 (5)

where c > 0 and b, c do not depend on the temperature.

a) Suppose b ̸= 0. What conditions must the coefficients satisfy in order for there to be a
phase transition? Suppose that there indeed is a phase transition. What is its order,
and how does the magnetization behave at the transition?

b) Suppose b = 0. At what value of a does one have a phase transition? This is called
a tricritical point. Compute the mean-field critical exponents α, β, γ, δ. Hint: for the
last two, you need to add a magnetic field term −Bm to the free energy

5) Asymptotic behaviour of the Green’s function

While performing calculations one often encounters the Green’s function G(x) for the
operator ∇2 + µ2 in d dimensions, which is given in momentum space by

G(x) =

∫
ddk

(2π)d
e−ik·x

k2 + µ2
(6)

In this exercise, we will use the saddle-point expansion to evaluate its asymptotic be-
haviour.

a) Explain why G(x) depends only on r = |x|. For which A is the identity 1
A
=
∫∞
0
dt e−tA

valid? Use it to write G(r) ∼
∫∞
0
e−S(t) for some S, ignoring a prefactor.

b) Find the minimum of S(t). Expanding S(t) to second order in t around the minimum
and performing the corresponding integral (this is the saddle-point approximation),
find the asymptotic behaviour of G(r) in the two regimes r ≪ 1/µ and r ≫ 1/µ.

6) Superfluid order parameter

Consider the following free energy, which describes an idealized superfluid:

F =

∫
dx

(
a(T ) |ψ|2 + b |ψ|4 − γ

∣∣∣∣dψdx
∣∣∣∣2 + µ

∣∣∣∣dψdx
∣∣∣∣4
)

(7)

where ψ(x), the superfluid order parameter, is a complex function and b, γ, µ > 0.

a) Consider the case where ψ is space-independent. What are the possible ground states?
Show that there is a phase transition at a = 0 and compute its mean field exponents.
Does this involve spontaneous symmetry breaking?
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b) Write the free energy in momentum space.

c) Suppose that only one Fourier mode contributes to the momentum-space free energy.
What value of the momentum minimises F? Show that the system undergoes a phase
transition and find the critical value of a. What symmetries are broken?

7) Wick’s identity

In this exercise we prove a useful formula valid for Gaussian theories, which we’ll need
later. Suppose that we have N real variables ϕi and let ϕ = (ϕ1, . . . , ϕN). For any function
f(ϕ), define

⟨f(ϕ)⟩ = 1

Z

∫ +∞

−∞
dNϕ exp

[
−1

2
ϕ ·G−1 · ϕ

]
(8)

where G is an invertible N ×N matrix.

a) What must be the value of Z if we require that ⟨1⟩ = 1?

b) Show that ⟨ϕiϕj⟩ = Gij. Hint: Add a term J · ϕ ≡
∑

i Jiϕi to the action, differentiate
appropriately and then set J = 0.

c) Therefore show that for any constant vector A, we have〈
exp

(∑
i

Aiϕi

)〉
= exp

(
1

2

∑
ij

AiAj⟨ϕiϕj⟩

)
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Critical Phenomena - Exercise Set 3

8) XY Model

The XY model is used to describe several condensed matter systems, and consists of two-
components spins S = (Sx, Sy) with S2 = 1 placed on the sites of a d-dimensional periodic
hypercubic lattice. The Hamiltonian is

H = −K
∑
⟨ij⟩

Si · Sj (9)

with K > 0, so that the spins want to be aligned. The notation ⟨ij⟩ means that i and j
are nearest neighbours.

a) What is the symmetry of this system?

b) Express each spin Si in terms of an angle θi and write the partition function Z =∫ ∏
i dSi e

−βH in terms of these angles.

c) At low temperature (large β) the spins vary slowly from site to site. Thus we may
expand H quadratically in the angles θi. What is the resulting low-temperature Hamil-
tonian?

d) Use a Fourier transformation of the angle variables to diagonalize the low-temperature
Hamiltonian.

e) Using Exercise 7, find an expression for ⟨S0 · Sx⟩ = Re⟨exp [i(θx − θ0)]⟩ in the form of
an integral. Use the stationary phase approximation to show that for large |x|, the
integral is dominated by small momenta. Hence find the asymptotic behaviour of the
correlation function ⟨S0 · Sx⟩, depending on the dimension d.

9) A surface model

An approximately flat surface (i.e. with no ‘overhangs’) in d-dimensions can be described
by its height h(x) as a function of the remaining (d − 1) coordinates x = (x1, . . . , xd−1).
If the surface has a tension σ, the Hamiltonian is simply H = σA where A is the area of
the surface,

A =

∫
d(d−1)x

√
1 + (∇h)2 (10)

a At suffiently low temperatures there will be only slow variations in h. By expanding the
Hamiltonian to quadratic order in h, express the total partition function as a functional
integral.

b By using a Fourier transformation to diagonize the quadratic Hamiltonian into normal
modes (known as capillary waves), show that the low-energy excitations are described
by Goldstone modes. Identify the symmetry breaking responsible for the generation of
the Goldstone modes.
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c Obtain an expression for the correlation function of the height ⟨(h((x)− h(0))2⟩ in the
form of an integral and, without evaluating it explicitly, comment on the form of your
result in dimensions d = 2, 3 and 4.

10) A yet-to-be-determined question
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Critical Phenomena - Exercise Set 4

11) Ising 1D Block spin transformation

In this exercise we will learn how to perform a block-spin transformation for the 1D Ising
model, which is one of the ways of performing a renormalization group transformation.
Consider an infinite chain of spins si = ±1 in one dimension with Hamiltonian

H = −J
∑
i

sisi+1 −
B

2

∑
i

(si + si+1) + C (11)

It will become clear later why we introduced the constant term. Define the partition
function as

Z =
∑

s1=±1

∑
s2=±1

· · · e−H (12)

where we set β = 1 for simplicity. The idea is to “integrate out” half the spins in the
above formula, thus leaving Z unchanged, but expressed in terms of a new Hamiltonian
H ′ which is defined in terms of the remaining spins only.

a) Separate the spins into even and odd and perform explicitly the sum over each odd spin
in eq.(12). Show that after “integrating out” all the odd spins the partition function
takes the same form as in eq.(12), where now the sum runs over all the even spins
and the new Hamiltonian H ′ is identical to H but with new parameters J ′, B′ and C ′.
Hint: consider one single odd spin s and its even nearest neighbours s− and s+. Write
explicitly all the terms in the Hamiltonian where s appears and perform the sum over
s = ±1. Then consider all the possible values that s− + s+ may take.

b) Remarkably, after this complicated procedure we have obtained the same Hamiltonian
only with different parameters J ′, B′ and C ′, defined in terms of the original J , B
and C. We may then imagine repeating this procedure multiple times, thus “flowing”
in the space of parameters. In the case that B = 0, check that no new B term is
generated by the flow. Therefore, in this case, find the fixed points of the block-spin
transformation. How does the correlation length behave at these fixed points?

12) The Lifshitz point

Certain materials, such as liquid crystals, are anisotropic and therefore behave differently
in different directions. Consider a d-dimensional system with coordinates x = (x, y⃗) where
y⃗ is a (d− 1)-dimensional vector, and Hamiltonian

H =

∫
dx d(d−1)y⃗

[
1

2
(∂xϕ)

2 +
1

2
(∇2ϕ)2 +

1

2
tϕ2

]
(13)

where ∇ refers to y⃗ only. Note that the Hamiltonian is quadratic in the x derivative, but
quartic in the y derivatives.

1. Write the Hamiltonian in Fourier space.
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2. Writing k = (k, q⃗) for the momenta, set up a renormalization group transformation
such that k′ = ζk, q⃗′ = ζaq⃗ and ϕ′(k′) = ζbϕ(k) and choose a and b so that the
normalization of the derivative terms is unchanged. How does t transform under
the renormalization group?

3. Compute ⟨ϕ(k)ϕ(k′)⟩ and the corresponding susceptibility χ(k) = ⟨|ϕ(k)|2⟩.

4. What is the scaling dimension of the field ϕ near the Gaussian fixed point? Consider
a generic interaction term of the form gnϕ

n. What is the dimension of gn? Show
that the quartic interaction ϕ4 is relevant in d < 7 and irrelevant in d > 7.

5. Now add a quartic perturbation to the Hamiltonian, gϕ4. What is its expression in
momentum space? Find an integral expression for the susceptibility χ to first order
in g. How would you find where the transition takes place from χ?

13) O(N) model

Consider N scalars ϕ⃗ = (ϕ1, . . . , ϕN) with Hamiltonian

H =

∫
ddx

[
1

2
(∇ϕ⃗)2 + 1

2
tϕ⃗2 + gϕ⃗4

]
(14)

which is symmetric under O(N) transformations of the N fields. One can compute the
renormalization group beta functions in d = 4− ϵ dimensions, which are given by:

dt

ds
= 2t+

N + 2

2π2

Λ4

Λ2 + t
g̃ (15)

dg̃

ds
= ϵg̃ − N + 8

2π2

Λ4

(Λ2 + t)2
g̃2 (16)

where Λ is the cutoff, g̃ = Λ−ϵg, and the RG transformation is such that x′ = esx.

a) Find the fixed points of the RG flow and show that there is a non-trivial fixed point.
This is called the Wilson-Fisher fixed point.

b) Linearize the beta functions and study the relevant and irrelevant directions at the
Wilson-Fisher fixed point.

c) Compute the critical exponent ν at the Wilson-Fisher fixed point. Assuming that
η ∼ ϵ2, compute also α, β, γ, δ to leading order in ϵ.

d) From the first beta function, we see that t is of order ϵ along the flow from the Gaussian
to the Wilson-Fisher fixed point. Under this assumption, find the beta function for g̃
to leading order in ϵ and solve it.
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Critical Phenomena - Exercise Set 5

14) O(N) perturbation

Consider the O(N) model of the previous question with the addition of a term which
breaks the O(N) symmetry, λ

∑N
i=1 ϕ

4
i . To leading order in ϵ, the coupled beta functions

for this model are in d = 4− ϵ,

dλ̃

ds
= ϵλ̃− 9

2π2
λ̃2 − 6

π2
g̃λ̃ (17)

dg̃

ds
= ϵg̃ − N + 8

2π2
g̃2 − 3

π2
g̃λ̃ (18)

where g̃ = Λ−ϵg and λ̃ = Λ−ϵλ.

a) Show that the Hamiltonian is positive definite only if g + λ > 0.

b) Show that the beta functions have four fixed points: the Gaussian fixed point, the

Heisenberg fixed point (with λ̃ = 0), the Ising fixed point (with (with g̃ = 0)) and the

cubic fixed point (with λ̃, g̃ ̸= 0). For which of these fixed points is the energy positive
definite?

c) Determine the stability of these fixed points in the (g, λ) plane and plot the RG flow
between them. Does the answer depend on N? Hint: the sign of the eigenvalues of a
2× 2 matrix can be determined from its determinant and trace.

15) A fluctuating membrane

A nearly flat two-dimensional membrane embedded in three-dimensional space is de-
scribed by the Hamiltonian

H =

∫
d2x

[r0
2
(∇h)2 + κ0

2

(
1 + (∇h)2

)−5/2 (∇2h
)2]

(19)

where h is the height of the membrane, and the second term is related to the curvature
of the membrane. Here r0 is the interface tension and κ0 is the bending modulus.

a) Assume that h is small so that the square root may be expanded in a series and all terms
quartic or higher in h may be neglected. Find integral expressions for ⟨(h(x)− h(0))2⟩
and ⟨(∇h(x)−∇h(0))2⟩ and estimate their long-distance behaviour. What does this
tell us about the long-distance order of the membrane?

b) Now again expand the square root and keep the first two terms, so that the Hamiltonian
now consists of three terms. Let H0 consist of the two quadratic terms in h. Then split
h into long-distance and short-distance modes, h = h−+h+, where h+ has support for
momenta Λ/ζ < k < Λ. Using e−H0[h+] as a probability distribution, show that

⟨h+(k)h+(k′)⟩+ =
1

r0k2 + κ0k4
(2π2)δ(k+ k′)
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c) Write the quartic term in the Hamiltonian in momentum space, and identify the term
which will renormalise the interaction (∇2h)2. Focus only on this term (so, in partic-
ular, ignore field renormalization) and derive the beta function

dk

ds
≈ − 5

4π

where ζ = es. What does this imply for the membrane? Do short distance fluctuations
make it more or less flexible on long-distance scales?

16) Sine-Gordon theory in 2D

The Sine-Gordon theory in 2D is related to the BKT transition which we considered
during the lectures. In this question we will consider its renormalization. We have a
scalar field ϕ with Hamiltonian

H =

∫
d2x

[
1

2
(∇ϕ)2 − λ0 cos(β0ϕ)

]
(20)

a) What are the naive dimensions of λ0 and β0?

b) Decompose the Fourier modes of the field as ϕ(k) = ϕ(k)−+ϕ(k)+ where ϕ+ has sup-
port for momenta Λ/ζ < k < Λ. Show that after integrating out ϕ+, the Hamiltonian
for ϕ−(x) (in real space) becomes

H ′[ϕ−] =

∫
d2x

[
1

2

(
∇ϕ−)2 − λ0⟨cos(β0(ϕ− + ϕ+))⟩+

]
to leading order in λ0. What does ⟨·⟩+ mean here?

c) Show that

⟨ϕ+(x)ϕ+(y)⟩+ =

∫ Λ

Λ/ζ

d2k

(2π)2
e−ik·(x−y)

k2

d) Hence, expressing the cosine in terms of exponentials and using Wick’s identity from
Exercise 7 show that

H ′[ϕ−] =

∫
d2x

[
1

2

(
∇ϕ−)2 − λ0ζ

−β2
0/4π

2

cos(β0ϕ
−)

]
Therefore show that the cosine term is relevant for β2

0 < 8π and irrelevant for β2
0 > 8π.
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