Critical Phenomena - Exercise Set 2

3) Ising 2D Self-duality

The Ising model in 2D can be solved exactly, but the solution is notoriously difficult. In this exercise we will use a duality transformation to find the transition temperature exactly without solving the model. In general, dualities are a powerful tool which may be applied to a wide range of systems. Consider the Ising model on an infinite two-dimensional square lattice,

$$
\begin{equation*}
H=-J \sum_{\langle i j\rangle} s_{i} s_{j} \quad Z(\beta)=\sum_{\{s\}} e^{-\beta H} \tag{4}
\end{equation*}
$$

where $s_{i}= \pm 1$ and $\langle i j\rangle$ denotes nearest neighbours. The sum in the partition function is over all possible spin configurations. Since J always appears in the product βJ, we can set $J=1$ and absorb it into β.
a) Show that $e^{\beta s_{i} s_{j}}=\cosh \beta+s_{i} s_{j} \sinh \beta$. Therefore find f_{0} and f_{1} such that the partition function may be written as

$$
Z(\beta)=\sum_{\{s\}} \prod_{\langle i j\rangle} \sum_{k=0}^{1} f_{k}(\beta)\left(s_{i} s_{j}\right)^{k}
$$

b) Show that we can change the order of the product and the sum so that

$$
Z(\beta)=\sum_{\{s\}} \sum_{\{k\}} \prod_{\langle i j\rangle} f_{k_{\langle i j\rangle}}(\beta)\left(s_{i} s_{j}\right)^{k_{\langle i j\rangle}}
$$

where $\{k\}$ is a possible assignment of $k_{\langle i j\rangle}=0,1$ to each nearest neighbour pair $\langle i j\rangle$.
c) Manipulate the last expression in the partition function in order to show that

$$
Z(\beta)=\sum_{\{k\}}\left(\prod_{\langle i j\rangle} f_{k_{\langle i j\rangle}}(\beta)\right) \prod_{i}\left(\sum_{s_{i}= \pm 1} s_{i}^{\sum_{\langle i j\rangle} k_{\langle i j\rangle}}\right)
$$

Show that the last term within brackets is non-zero only if $\sum_{\langle i j\rangle} k_{\langle i j\rangle}$ is even.
d) Now we rewrite the partition function in terms on new variables defined on the dual lattice. This is again a square lattice, where the sites are shifted by half a lattice spacing in the two directions. Draw the dual lattice in relation to the original lattice and convince yourself that each site of the original lattice corresponds to a unique plaquette in the dual lattice, and viceversa, and that moreover each link of the original lattice uniquely identifies a link of the dual lattice.
e) Define new Ising variables $\sigma_{\tilde{i}}= \pm 1$ on each site \tilde{i} of the dual lattice. Show that each $\langle i j\rangle$ identifies a pair $\langle\tilde{i} \tilde{j}\rangle$ of nearest neighbour sites \tilde{i} and \tilde{j} in the dual lattice. Now we set $k_{\langle i j\rangle}=\frac{1}{2}\left(1-\sigma_{\tilde{i}} \sigma_{\tilde{j}}\right)$. Is this relation well-defined? Show that this choice makes $\sum_{\langle i j\rangle} k_{\langle i j\rangle}$ always even. It can be shown that this choice is necessary in order to make the sum even.
f) Therefore show that in terms of the new variables,

$$
Z(\beta)=2^{N} \frac{1}{2} \sum_{\{\sigma\}}\left(\prod_{\langle\tilde{i j}\rangle} f_{\frac{1}{2}\left(1-\sigma_{\tilde{i}} \sigma_{j}^{j}\right.}(\beta)\right)
$$

where N is the number of spins. Hint for the factor of $1 / 2$: what happens to the k if we send all $\sigma \rightarrow-\sigma$?
g) Show that $f_{k}(\beta)=\cosh (\beta) \exp [k \log \tanh (\beta)]$ for the relevant values of k, and that therefore

$$
Z(\beta)=\frac{(\sinh (2 \beta))^{N}}{2} Z\left(\beta^{*}\right)
$$

for a value β^{*} which you will need to find. Show that large (small) β corresponds to small (large) β^{*}. This shows that the 1D Ising model is self-dual: we have an exact relation between the high-temperature and low-temperature partition function.
h) What does the relation for the partition function at point g) mean for the free energy per spin in the thermodyanamic limit? Assuming that there is a unique critical point where the free energy is non-analytic, find the critical value β_{c}.

4) Ginzburg-Landau Theory

The Ising model has a \mathbb{Z}_{2} global symmetry given by flipping all the spins at once, $s_{i} \rightarrow-s_{i}$. Under this flip, the magnetization changes sign $m \rightarrow-m$. In the spirit of GinzburgLandau theory we may write an effective free energy

$$
\begin{equation*}
f(m, T)=a(T)+\frac{1}{2} b(T) m^{2}+\frac{1}{4} c(T) m^{4}+\cdots \tag{5}
\end{equation*}
$$

by including the lowest order terms which respect the symmetry $m \rightarrow-m$, while the coefficients depend on the temperature T.
a) What conditions must the coefficients satisfy in order for f to be bounded below?
b) Suppose that the system undergoes a phase transition at $T=T_{c}$. What conditions must $b(T)$ satisfy in order for this to occur?
c) Expand $b(T)$ to its lowest order, and therefore find the minimum m of the free energy in the cases $T<T_{c}$ and $T>T_{c}$.
d) Find the critical exponent $\widetilde{\beta}$ as defined in Exercise 2. Does the answer agree with the result of Exercise 2?

5) Tricritical point

This exercise is similar in spirit to Exercise 3, but a little more involved. Consider the free energy

$$
\begin{equation*}
f(m, T)=a(T) m^{2}+b m^{4}+c m^{6} \tag{6}
\end{equation*}
$$

where $c>0$ and b, c do not depend on the temperature.
a) Suppose $b \neq 0$. What conditions must the coefficients satisfy in order for there to be a phase transition? Suppose that there indeed is a phase transition. What is its order, and how does the magnetization behave at the transition?
b) Suppose $b=0$. At what value of a does one have a phase transition? This is called a tricritical point. Compute the mean-field critical exponents $\alpha, \beta, \gamma, \delta$. Hint: for the last two, you need to add a magnetic field term - Bm to the free energy

