Critical Phenomena - Exercise Set 3

6) Superfluid order parameter

Consider the following free energy, which describes an idealized superfluid:

$$F = \int dx \left(a(T) \left| \psi \right|^2 + b \left| \psi \right|^4 - \gamma \left| \frac{d\psi}{dx} \right|^2 + \mu \left| \frac{d\psi}{dx} \right|^4 \right)$$
(7)

where $\psi(x)$, the superfluid order parameter, is a complex function and $b, \gamma, \mu > 0$.

- a) Consider the case where ψ is space-independent. What are the possible ground states? Show that there is a phase transition at a = 0 and compute its mean field exponents. Does this involve spontaneous symmetry breaking?
- b) Write the free energy in momentum space.
- c) Suppose that only one Fourier mode contributes to the momentum-space free energy. What value of the momentum minimises F? Show that the system undergoes a phase transition and find the critical value of a. What symmetries are broken?

7) Wick's identity

In this exercise we prove a useful formula valid for Gaussian theories. Suppose that we have N real variables ϕ_i and let $\phi = (\phi_1, \ldots, \phi_N)$. For any function $f(\phi)$, define

$$\langle f(\phi) \rangle = \frac{1}{Z} \int_{-\infty}^{+\infty} d^N \phi f(\phi) \exp\left[-\frac{1}{2}\phi \cdot G^{-1} \cdot \phi\right]$$
(8)

where G is an invertible $N \times N$ matrix.

- a) What must be the value of Z if we require that $\langle 1 \rangle = 1$? Note: you should compute the integral explicitly.
- b) Show that $\langle \phi_i \phi_j \rangle = G_{ij}$. Hint: Add a term $J \cdot \phi \equiv \sum_i J_i \phi_i$ to the action, differentiate appropriately and then set J = 0.
- c) Therefore show that for any constant vector A, we have

$$\left\langle \exp\left(\sum_{i} A_{i}\phi_{i}\right)\right\rangle = \exp\left(\frac{1}{2}\sum_{ij} A_{i}A_{j}\langle\phi_{i}\phi_{j}\rangle\right)$$

8) Asymptotic behaviour of the Green's function

While performing calculations one often encounters the Green's function $G(\mathbf{x})$ for the operator $\nabla^2 + 1/\xi^2$ in d dimensions, which is given in momentum space by

$$G(\mathbf{x}) = \int \frac{d^d k}{(2\pi)^d} \frac{e^{-i\mathbf{k}\cdot\mathbf{x}}}{k^2 + 1/\xi^2}$$
(9)

where ξ is the correlation length. In this exercise, we will use the *saddle-point expansion* to evaluate its asymptotic behaviour.

- a) Explain why $G(\mathbf{x})$ depends only on $r = |\mathbf{x}|$. For which A is the identity $\frac{1}{A} = \int_0^\infty dt \, e^{-tA}$ valid? Use it to write $G(r) \sim \int_0^\infty e^{-S(t)}$ for some S, ignoring a prefactor.
- b) Find the minimum of S(t). Expanding S(t) to second order in t around the minimum and performing the corresponding integral (this is the saddle-point approximation), find the asymptotic behaviour of G(r) in the two regimes $r \ll \xi$ and $r \gg \xi$.

9) More asymptotic behaviour

In class we computed the fluctuation corrections to the mean-field approximation, and in doing so we encountered the integral

$$I_d = \int \frac{d^d k}{(2\pi)^d} \frac{1}{(k^2 + 1/\xi^2)^2}$$
(10)

In this question we investigate the behaviour of I_d in different dimensions.

- a Perform the angular integrals explicitly in terms of the area S_d of the *d*-dimensional sphere. What are the problematic regions of the resulting expression for I_d , which could give rise to a divergence?
- b Show that the integral diverges for d > 4. Introduce a momentum cutoff and find the asymptotic behaviour of the integral in terms of the cutoff.
- c Show that the integral is finite for d < 4. Perform a change of variables to extract the dimensional dependence of I_d .

This calculation shows that for d > 4 the fluctuation corrections are constant on each side of the transition, so they lead at most to a finite jump; on the other hand for d < 4, since ξ itself diverges at the transition, the fluctuation corrections are much more severe. Therefore the saddle-point approximation of the path-integral is not reliable for d < 4 and in fact d = 4 is the upper critical dimension.