
Critical Phenomena - Solutions to Exercise Set 1

1) Ising 1D Exact Solution

a) The partition function may be written as

Z =
∑

s1=±1

· · ·
∑

sN=±1

N∏
i=1

eβJsisi+1+βB
2
(si+si+1) (1)

We give a name to the term in the product,

T (s, s′) = eβJss
′+βB

2
(s+s′) (2)

So that we find,

Z =
∑

s1=±1

· · ·
∑

sN=±1

T (s1, s2)T (s2, s3) · · ·T (sN , s1) (3)

Now define a matrix T such that T (s, s′) are its matrix elements, i.e.

T =

(
T (−1,−1) T (−1, 1)
T (1,−1) T (1, 1)

)
=

(
eβ(J+B) e−βJ

e−βJ eβ(J−B)

)
(4)

Then we recognize that eq.(3) for Z is just the formula for the product of N times the
matrix T , plus an overall trace, i.e.

(AB)(i, j) =
∑
k

A(i, k)B(k, j) tr(A) =
∑
i

A(i, i) (5)

Then we see that indeed Z = tr(TN) as required.

b) It’s elementary to compute the eigenvalues of T , which are given by

λ± = eβJ cosh βB ±
√
e2βJ sinh2 βB + e−2βJ (6)

so that we may also compute Z explicitly,

Z = λN+ + λN− (7)

c) The magnetization can be computed by differentiating the partition function with
respect to B,

m =
1

N
⟨
∑
i

si⟩ ≡
1

N

1

Z

∑
{s}

(∑
i

si

)
e−βH =

1

NβZ

∂

∂B
Z =

1

β

λN−1
+

∂λ+

∂B
+ λN−1

−
∂λ−
∂B

λN+ + λN−
(8)

We can check that λ+ > λ−, so in the thermodynamic limit Z ≈ λN+ . We can perform
the limit explicitly in the magnetization, and we obtain

lim
N→∞

m =
1

βλ+

∂λ+
∂B

(9)
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For B = 0 we then find that λ+|B=0= 2 cosh βJ and (computing the derivative explicitly)
∂λ+

∂B
|B=0= 0 so that the magnetization is zero in the thermodynamic limit. For B ̸= 0 it’s

easy to compute the formula explicitly, and we will find that the magnetization has the
same sign as B, which makes sense.

d) The Hamiltonian is translationally symmetric, so C(i, j) does not depend on the values
of i and j but only on their difference i− j. For the same reason it doesn’t matter what
spin we look at, so ⟨si⟩ = ⟨sj⟩. Now we compute ⟨sisj⟩, which is given by

⟨sisj⟩ =
1

Z

∑
{s}

sisje
−βH (10)

We write again e−βH in terms of the transfer matrix, and we find that

⟨sisj⟩ =
1

Z

∑
s1=±1

· · ·
∑

sN=±1

T (s1, s2)T (s2, s3) · · · siT (si, si+1) · · · sjT (sj, sj+1) · · ·T (sN , s1)

(11)
where we have chosen to place si just before T (si, si+1) and similarly for sj. So the only
difference compared to the original case is that at the two points i and j the matrix
elements are modified to

T̃ (s, s′) = sT (s, s′) (12)

The new matrix T̃ has matrix elements

T̃ =

(
eβ(J+B) e−βJ

−e−βJ −eβ(J−B)

)
= σzT (13)

where σz is the third Pauli matrix. Therefore now the expression can again be written as
a matrix product plus a trace,

⟨sisj⟩ =
1

Z
tr(T i−1 T̃ T j−i−1 T̃ TN−j) =

1

Z
tr(σzT

j−i σzT
N−(j−i)) (14)

where we also used the cyclic property of the trace. We see explicitly that ⟨sisj⟩ depends
only on the difference j−i. In order to compute this we use quantum-mechanical notation.
Let v± be orthonormal eigenvectors of T , i.e. Tv± = λ±v±. Then we can write the spectral
decomposition of T using bra-ket notation,

T n = λn+ |v+⟩ ⟨v+|+ λn− |v−⟩ ⟨v−| (15)

So we find

⟨sisj⟩ × Z = ⟨v+|σzT j−i σzT
N−(j−i) |v+⟩+ ⟨v−|σzT j−i σzT

N−(j−i) |v−⟩ = (16)

= λN+ ⟨v+|σz |v+⟩2 ++λN− ⟨v−|σz |v−⟩2+ (17)

+
(
λ
N−(j−i)
− λj−i

+ + λ
N−(j−i)
+ λj−i

−

)
⟨v+|σz |v−⟩2 (18)

Remembering that Z = λN+ + λN− and taking the thermodynamic limit N → ∞, since
λ+ > λ−, we find

⟨sisj⟩ = ⟨v+|σz |v+⟩2 +
(
λ−
λ+

)j−i

⟨v+|σz |v−⟩2 (19)
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Repeating the same type of calculation for ⟨si⟩, it is not hard to see that ⟨si⟩ = ⟨v+|σz |v+⟩
in the thermodynamic limit. Therefore we find that

C(i, j) = ⟨sisj⟩ − ⟨si⟩⟨sj⟩ =
(
λ−
λ+

)j−i

⟨v+|σz |v−⟩2 (20)

In general it is quite annoying to compute v± with the correct normalization. However,
for B = 0 we have

|v±⟩ =
1√
2

(
±1
1

)
(21)

Therefore we recover the result that ⟨si⟩ = ⟨v+|σz |v+⟩ = 0 for B = 0, and moreover we
find ⟨v+|σz |v−⟩ = −1. Therefore,

C(i, j) =

(
λ−
λ+

)j−i

= (tanh βJ)j−i (22)

as the eigenvalues also simplify for B = 0. We note in passing that the quantum-
mechanical notation for T is more than a simple analogy: in fact the transfer matrix
for a classical system can be used to find the Hamiltonian of a corresponding quantum-
mechanical system in one dimension less. This is known as the quantum-classical corre-
spondence.

d) From the expression of part c) we find

C(i, j) = e(j−i) log tanhβJ (23)

Note that from our construction we assumed implicitly that j > i. From the exponential
piece we therefore see that

ξ = − 1

log tanh βJ
(24)

Since there is no power-law, we conclude that the power is zero, therefore η = 1 in d = 1.
Now for ξ → ∞, the denominator must go to 0 (note that ξ > 0). This happens when
tanh βJ → 1, which means that β → ∞, so the temperature goes to zero. In fact the 1D
Ising model has no critical point at finite temperature. This is consistent with what we
found in c).

2) Ising 1D Mean Field Theory

a) As noted during the class, it is not strictly true that (si − m) is small for the Ising
model, but we actually only need this to be true inside the sum over nearest neighbours,
which may or may not be the case. The Ginzburg criterion, which we’ll see later in the
course, will tell us whether mean-field theory works or not. In any case, we set

sisj = m2 +m(si −m) +m(sj −m) (25)
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in the sum. Then the partition function becomes

Z =
∑
{s}

exp

(
βJ
∑
i

sisi+1 + βB
∑
i

si

)
= (26)

=
∑
{s}

exp

[
βJ

(
m
∑
i

si +m
∑
i

si+1 −Nm2

)
+ βB

∑
i

si

]
= (27)

=
∑
{s}

exp

(
−NβJm2 + β(2mJ +B)

∑
i

si

)
(28)

We see that the mean-field approximation has removed the interactions. Now the spins
only feel the presence of their neighbours through an effective magnetic field Beff = B +
2mJ . All the spins are now indepedent, so

Z = exp
(
−NβJm2

) ∑
s1=±1

∑
s2=±1

· · ·
∑

sN=±1

∏
i

exp (β(2mJ +B)si) = (29)

= exp
(
−NβJm2

)∏
i

(∑
si=±1

exp (β(2mJ +B)si)

)
= (30)

= exp
(
−NβJm2

) [
eβ(2mJ+B) + e−β(2mJ+B)

]N
= (31)

=
[
2 exp

(
−βJm2

)
cosh β(2mJ +B)

]N
(32)

which is the explicit expression we were looking for.

b) Having obtained the partition function explicitly, we can obtain the magnetization by
differentiating wrt B,

m ≡ 1

N
⟨
∑
i

si⟩ =
1

ZNβ

∂Z

∂B
(33)

Therefore plugging in the mean-field partition function we find,

m = tanh (2mβJ + βB) (34)

This is called the self-consistency equation because it ensures that our assumption that the
magnetization is m agrees with the magnetization computed under the same assumption.
(Note that there is a mistake in the text of the exercise; the correct statement is that q is
the number of nearest neighbours per spin, which means q = 2 in our case. Apologies!)

c) For B = 0 the self-consistency equation is given by m = tanh (2mβJ). Setting x =
2mβJ , the equation becomes x

2βJ
= tanhx, so it’s a matter of finding the intersection

between a line and the hyperbolic tangent. Fig.1 shows the geometric problem for two
slopes of the line. We see that the two curves intersect either once or three times. This is
determined by the relative slopes at x = 0. The slope of tanhx is equal to 1; if the slope
of the line is greater than this, then the intersection occurs once; otherwise if the slope
of the line is smaller than 1, the intersection occurs three times. Therefore we see that
there is a critical value βc = 1/(2J); for β < βc there is only one solution, m = 0 and the
system is disordered. On the other hand for β > βc, we have three solutions: it turns out
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(a) In red tanhx while in black 0.25x. The
two curves intersect three times.

(b) In red tanhx while in black 1.25x. The
two curves intersect only once.

Figure 1: Graphical solution of the self-consistency equation.

that m = 0 is unstable, so the system will settle at either ±m∗ for some m∗. Thus the
system orders and the Z2 symmetry is spontaneously broken.

In Exercise 1 we solved this system exactly and we found that there was no phase tran-
sition. Therefore we see that the mean-field approximation fails completely in this case,
because we find a phase transition. It turns out that for the Ising model the mean-field
approximation fails in d = 1, it is qualitatively correct in d = 2, 3 (in the sense that
it correctly predicts a phase transition, but gives the wrong critical exponents), while it
predicts the correct critical exponents for d ≥ 4. Thus we say that 2 is the lower critical
dimension of the Ising model, and 4 is the upper critical dimension.

d) For small x, a series expansion gives tanhx ≈ x, so in the limit β → 0 (high tempera-
ture), we find

m ≈ βB

(1− 2βJ)
≈ βB (35)

Therefore the magnetization takes the same sign as the magnetic field, as expected.

e) We write T = Tc(1 + t) and we’re interested in the behaviour of m for t near zero.
Using βc = 1/(2J) and T = 1/β, we see that

m = tanh

(
m

1 + t

)
(36)

For t > 0, that is T > Tc, the magnetization is exactly zero; for small t < 0 the system
has a small finite magnetization m. Thus the whole argument of the hyperbolic tangent
is small, and we may expand it as a series for small values of the parameter. We find,

m =
m

1 + t
− 1

3

m3

(1 + t)3
+ · · · = m−mt− 1

3
m3 + · · · (37)

Therefore we see that m ∼ (−t)1/2+ · · · , so that β̃ = 1/2. This is the mean field exponent
for the magnetization of the Ising model.
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