
Critical Phenomena - Solutions to Exercise Set 2

3) Ising 2D Self-duality

a) From the exponential definitions of cosh and sinh it is clear that ex = coshx+ sinhx.
Then the result follows from noting that sisj = ±1 and that cosh is even while sinh is
odd. Then it is clear that f0(β) = cosh β while f1(β) = cosh β.

b) Suppose that the nearest neighbour pairs are ⟨12⟩, ⟨34⟩, ⟨13⟩ and so on. Then we can
write the product explicitly as

∏
⟨ij⟩

1∑
k=0

fk(β)(sisj)
k =

(
1∑

k=0

fk(β)(s1s2)
k

)(
1∑

k=0

fk(β)(s3s4)
k

)(
1∑

k=0

fk(β)(s1s3)
k

)
· · ·

(38)
Now technically the ks in each sum are different, so we need to give them a different name.
Since there is one term in the product per pair ⟨ij⟩, we call each k as k⟨ij⟩, so that in fact

∏
⟨ij⟩

1∑
k=0

fk(β)(sisj)
k =

 1∑
k⟨12⟩=0

fk⟨12⟩(β)(s1s2)
k

 1∑
k⟨34⟩=0

fk⟨34⟩(β)(s3s4)
k

 1∑
k⟨13⟩=0

fk⟨13⟩(β)(s1s3)
k

 · · ·

(39)
Now we can group together all the summations and all the products,

∏
⟨ij⟩

1∑
k=0

fk(β)(sisj)
k =

1∑
k⟨12⟩=0

1∑
k⟨34⟩=0

1∑
k⟨13⟩=0

· · ·
(
fk⟨12⟩(β)(s1s2)

k
)(

fk⟨34⟩(β)(s3s4)
k
)(

fk⟨13⟩(β)(s1s3)
k
)
· · ·

(40)
Now we see that we have one k per nearest neighbour pair ⟨ij⟩. So a configuration {k}
of ks is an assignment of one k⟨ij⟩ = 0, 1 to each nearest neighbour pair. Therefore by
definition, ∑

{k}

≡
1∑

k⟨12⟩=0

1∑
k⟨34⟩=0

1∑
k⟨13⟩=0

· · · (41)

We’re then left with simply the product over all nearest neighbour pairs inside this sum,

∏
⟨ij⟩

1∑
k=0

fk(β)(sisj)
k =

∑
{k}

∏
⟨ij⟩

fk⟨ij⟩(β)(sisj)
k (42)

which is the formula that we needed. This technique of exchanging summation and
product is often very useful and of very general applicability: it doesn’t depend on the
range of k, nor on the number of factors in the product, nor on the form of the object
we’re summing over.

c) Now the partition function is therefore given by

Z(β) =
∑
{s}

∑
{k}

∏
⟨ij⟩

fk⟨ij⟩(β)(sisj)
k⟨ij⟩ (43)
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We can break up the last product into two pieces,

Z(β) =
∑
{s}

∑
{k}

∏
⟨ij⟩

fk⟨ij⟩(β)

∏
⟨ij⟩

(sisj)
k⟨ij⟩ (44)

Now we want to turn the last product from a product over links (nearest neighbour pairs)
to a product over single sites. To gain some intuition, we note that if again the nearest
neighbour pairs are ⟨12⟩, ⟨34⟩, ⟨13⟩ and so on, then the product is∏

⟨ij⟩

(sisj)
k⟨ij⟩ = (s1s2)

k⟨12⟩(s3s4)
k⟨34⟩(s1s3)

k⟨13⟩ · · · (45)

We want to gather together all the terms corresponding to each individual site i. We see

that each spin si will appear in the product as s
k⟨ij⟩
i for each of its nearest neighbours j.

Therefore gathering all these terms together we get s
∑

⟨ij⟩ k⟨ij⟩
i where the sum runs over all

nearest neighbour pairs emanating from i. Therefore we find,

Z(β) =
∑
{s}

∑
{k}

∏
⟨ij⟩

fk⟨ij⟩(β)

∏
i

s
∑

⟨ij⟩ k⟨ij⟩
i (46)

Now we can move the sum over all spin configurations to the end. Since this is a sum
over each individual spin si, overall we find

Z(β) =
∑
{k}

∏
⟨ij⟩

fk⟨ij⟩(β)

∏
i

(∑
si=±1

s
∑

⟨ij⟩ k⟨ij⟩
i

)
(47)

which is the formula we were looking for. Now we can compute the sum explicitly,∑
si=±1

s
∑

⟨ij⟩ k⟨ij⟩
i = 1 + (−1)

∑
⟨ij⟩ k⟨ij⟩ (48)

Therefore it equals zero if
∑

⟨ij⟩ k⟨ij⟩ is odd, and it equals 2 otherwise. Now looking at
the form of the partition function, we see that it is now a sum over all configurations of
k. However, because of this last product, many of these configurations do not contribute
to the partition function; the ones that contribute are those for which

∑
⟨ij⟩ k⟨ij⟩ is even

for all sites i. Therefore, in some sense, the ks are not the correct variables, because only
some of the k configurations contribute to the partition function. It is then natural to try
to express k in terms of new variables such that the evenness of the sum is always true.

d) The dual lattice is drawn in Fig.2a. The sites of the original lattice are the intersections
of the solid lines, while the sites of the dual lattice are the intersections of the dotted lines.
So we see that each site of the original lattice is enclosed by a unique plaquette (smallest
square) in the dual lattice and viceversa. We also see that each link (a connection between
two neighbouring sites) crosses a unique link in the dual lattice (i.e. the two together form
a cross).

As we discussed in class, in this case the introduction of the dual lattice may seem to be
insufficiently motivated. After all, it’s just another square lattice! However, it turns out
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(a) A two dimensional square lattice (solid
line) and its dual lattice (dotted line).

(b) A site in the original lattice with its four
neighbours and the dual links.

Figure 2: The original lattice and its dual

that this is a good idea in the long run for two reasons: the first one is that the original
and dual lattice have a natural interpretation in terms of a mathematical construct called
lattice differential forms which makes it much easier to construct dualities. The second
reason is that it generalizes to more complicated lattices than the square lattice; for
example one can consider the Ising model on the honeycomb lattice, then the dual theory
is again an Ising model which lives on the dual lattice, which is now a triangular lattice.
Without the concept of a dual lattice one might have tried to find a duality to another
honeycomb lattice, which wouldn’t have worked. So this concept generalizes nicely.

e) We have seen in d) that each link in the original lattice identifies a link in the dual
lattice. Each link is nothing but a nearest neighbour pair. The relation is well defined
because σĩ σj̃ = ±1 so 1

2
(1 − σĩ σj̃) ∈ {0, 1} as required. Looking at Fig.2b, we see that

the nearest neighbours of a site i in the original lattice form a “star” or a “cross” made of
four links. Then the dual links of the four links form a plaquette in the dual lattice; at the
four vertices of the plaquette we have four dual variables which we call σĩ for ĩ = 1, 2, 3, 4.
Then we see that ∑

⟨ij⟩

k⟨ij⟩ = 2− 1

2
(σ1σ2 + σ2σ3 + σ3σ4 + σ4σ1) (49)

Then the sum inside the bracket is always a multiple of four. This is perhaps surprising
because naively we might think it is just a multiple of two. However, the four terms are
not independent: we can pick x = σ1σ2, y = σ2σ3, z = σ3σ4 independently from ±1 but
then xyz = σ1σ2σ2σ3σ3σ4 = σ1σ4 is the last term. Then the quantity in brackets becomes

x+ y + z + xyz = x+ y + z(1 + xy) (50)

If x and y have opposite signs then x+ y = 0 and 1 + xy = 0, so we get zero, which is a
multiple of four. On the other hand if they have the same sign then x = y so overall we
get 2x+2z, which is either zero or four. So overall (σ1σ2 + σ2σ3 + σ3σ4 + σ4σ1) is always
a multiple of four, meaning that the sum over the ks is always even.

What we did here is we started from some variables (the ks) which were not very good
because only a subset of the configurations of ks contributed to the partition function.
Then we expressed k in terms of new variables (the σs) such that now all the ks in this
form contribute. In this case we postulated the relation between the ks and the σs but
there is in fact a mathematical theory (which we won’t discuss) which allows us to derive
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this relation. In fact it can be shown that if we want
∑

⟨ij⟩ k⟨ij⟩ to be even for every site

i, then it must be the case that k⟨ij⟩ =
1
2
(1± σĩ σj̃) for some new variables σ = ±1.

f) Expressing k terms of the new variables σ we have∑
si=±1

s
∑

⟨ij⟩ k⟨ij⟩
i = 2 (51)

because the sum is always even. So we get a factor of 2 for each site and there’s N of
them. So we find

Z(β) = 2N
1

2

∑
{σ}

∏
⟨̃ij̃⟩

f 1
2(1−σĩσj̃)

(β)

 (52)

where the product now runs over nearest neighbour pairs in the dual lattice (which as we
have seen are in one-to-one correspondence with nearest neighbour pairs in the original
lattice). We also replaced the sum over ks with the sum over σs, but since if we replace
σ with −σ the ks are unchanged, by doing so we’re overcounting by a factor of 2, which
we therefore divide by.

g) Since k = 0, 1 the result follows easily in each of the two cases. Then plugging it in
the partition function, we find

Z(β) = 2N
1

2

∑
{σ}

∏
⟨̃ij̃⟩

cosh(β) exp

[
1

2

(
1− σĩσj̃

)
log tanh(β)

]
= (53)

= 2N
1

2

∑
{σ}

∏
⟨̃ij̃⟩

cosh(β) exp

[
1

2
log tanh(β)

] exp

−1

2
log tanh(β)

∑
⟨̃ij̃⟩

σĩσj̃

 =

(54)

=
(sinh (2β))N

2

∑
{σ}

exp

−1

2
log tanh(β)

∑
⟨̃ij̃⟩

σĩσj̃

 (55)

where in going to the last line we noted that the terms inside the product are now constant.
On a lattice withN spins, we have 2N nearest neighbour pairs, so 2N terms in the product
and the rest follows from some algebra. The important thing to note is that on the last
line we have again an expression which is identical to the partition function of the 2D
Ising model at inverse temperature β∗ = −1

2
log tanh(β). Therefore,

Z(β) =
(sinh (2β))N

2
Z(β∗) (56)

We summarise this fact by saying that the 2D Ising model is self-dual : after performing
the duality transformation, we have obtained the same partition function at a different
temperature. As we will see shortly, the prefactor does not play any role and can generally
be ignored. It’s not difficult to see that β∗ is a decreasing function of β; and moreover
β∗ → 0 as β → ∞, while β∗ → ∞ as β → 0. This happens generically: dualities swap
high-temperature with low-temperature.
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h) The free energy per spin is defined in the thermodynamic limit as

f(β) = lim
N→∞

− 1

Nβ
logZ(β) (57)

Therefore taking the logs on both sides of eq.(56) and performing the appropriate limit,
we find that

f(β) = − 1

β
log sinh (2β) + f(β∗) (58)

Phase transitions occur at a point of non-analiticity of f(β). Now the term in the middle,
− 1
β
log sinh (2β), is analytic for any finite β, and therefore does not matter for phase

transitions.

Now suppose that there is a phase transition at β = βc. This means that f(β) is non-
analytic at βc. But from the above relation eq.(58), this also means that f(β) is non-
analytic also at β∗

c = −1
2
log tanh(βc). So if there is a phase transition at βc, there must

also be a phase transition at β∗
c . Therefore we have a relation between the points at which

phase transitions occur. Assuming that there is only one phase transition, this means that
we must have βc = β∗

c . This equation can be solved exactly as follows. We have:

βc = −1

2
log tanh(βc) → e−2βc = tanh(βc) (59)

This is good because we know that also tanh can be expressed in terms of exponentials.
But it would be even better to express it in terms of e2βc , and in fact,

tanh βc ≡
sinh βc
cosh βc

=
sinh βc cosh βc

cosh2 βc
=

e2βc − e−2βc

e2βc + e−2βc + 2
(60)

Now substituting x = e2βc and simplifying, this becomes an algebraic equation, x3 − x2 −
3x− 1 = 0. This is easy to solve because it has a root x = −1, while the other two roots
are x = 1±

√
2. Only the positive root is acceptable, so in the end we find

βc =
1

2
log (1 +

√
2) (61)

which is the transition temperature.

4) Ginzburg-Landau Theory

a) Considering the terms up tom4 we see that if c(T ) < 0, then f(m) → −∞ asm→ ±∞.
Thus the system is unstable. On the other hand as long as c(T ) > 0 the system has a
global minimum and is therefore stable.

b) To find the minima of the free energy we differentiate f to find,

∂f

∂m
= b(T )m+

1

3
c(T )m3 = 0 → m = 0, m = ±

√
−b(T )
c(T )

(62)

Therefore we have two cases: if b(T ) > 0 then only m = 0 is a solution and it’s not hard
to see that it is a global minimum. On the other hand if b(T ) < 0 then all three solutions
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(a) Plot of the free energy for b(T ) > 0. (b) Plot of the free energy for b(T ) < 0.

Figure 3: Sketch of the free energy f(m) = a(T ) + 1
2
b(T )m2 + 1

4
c(T )m4.

are allowed. We find that m = 0 is now a maximum, while m = ±
√

−b(T )
c(T )

are minima.

The Z2 symmetry is broken by a choice of one of the two minima. The free energy is
plotted in Fig.3. The fact that m = 0 is a local maximum and therefore an unstable
equilibrium confirms what we said in the solution to Exercise 2. So in the end if we have
a phase transition at T = Tc then b(T ) must change sign at Tc.

c) To its lowest order, b(T ) = b(T − Tc) with b > 0 so at high temperature the system
is disordered, while it is ordered at low temperature as we expect. The minimum of the

free energy is therefore m = 0 for T > Tc and m = ±
√

b
c
(Tc − T ) for T < Tc.

d) From the solution in part c) and the definition in Exercise 2, we find β̃ = 1/2 which is
the same answer we found in Exercise 2. This is the mean-field exponent. In fact when
we wrote down the free energy in this exercise, we ignored the fluctuations in m, which is
the same as the mean-field approximation of Exercise 2. Note that we assumed nothing
about the dimensionality of the system in this exercise.

5) Tricritical point

a) First of all, we must have c > 0 in order for the system to be stable. Then the critical
points are given by

∂f

∂m
= 2m(a(T ) + 2bm2 + 3cm4) = 0 → m = 0, m2 =

−b±
√
b2 − 3ca(T )

3c
(63)

The second solution is admissible only if b2 − 3ca(T ) > 0 and m2 > 0. Then we have to
check several cases.

We sketch the phase diagram first for b > 0. The solution will depend on a(T ). If
a(T ) > 0 we can check that only m = 0 is a solution, and it is a global minimum. On
the other hand, if a(T ) < 0 we can check that we have three critical points at m = 0 and

m = ±
√

−b+
√
b2−3ca(T )

3c
. To determine the global minimum we plug the values back into

f (for the non-trivial points this can be simplified by using their defining equation) and
we see that now the two non-trivial critical points are global minima. Therefore for b > 0
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we have a phase transition as a(T ) changes sign, and we also see that the magnetization
continuously goes from non-zero to zero as we increase a(T ) from positive to negative.
Hence the transition is second-order.

Now consider the case b < 0. In that case if a(T ) > b2/(3c) then only m = 0 is a
solution, and it is a global minimum. If, on the other hand, 0 < a(T ) < b2/(3c) then

five critical points emerge at m = 0 and m = ±
√

−b±
√
b2−3ca(T )

3c
. The solutions with

− inside the square root are local maxima, while the ones with + are local minima. If
we decrease a(T ) further so that a(T ) < 0 then we find three critical points at m = 0

and m = ±
√

−b+
√
b2−3ca(T )

3c
. We then need to determine the global minimum, and we

find that for a(T ) > b2/(4c) the global minimum is m = 0, while for a(T ) < b2/(4c)

the global minimum is m = ±
√

−b+
√
b2−3ca(T )

3c
. This time the transition occurs as a(T )

crosses b2/(4c). Hence m is discontinuous at the transition, which is therefore first order.

b) For b = 0 then the situation simplifies substantially and we have critical points at

m = 0 and m =
(
−a(T )

3c

)1/4
. Therefore the phase transition occurs at a(T ) = 0. Ex-

panding a(T ) = a(T − Tc) like in Exercise 4, we see that m =
(
a
3c
(Tc − T )

)1/4
so that the

magnetization critical exponent β = 1/4. Substituting into the free energy we find,

f = −2

3

(
a3

3c

)1/2

(Tc − T )3/2 (64)

Then the heat capacity is

C = −T ∂
2f

∂T 2
=

1

2

(
a3

3c

)1/2
T√

Tc − T
(65)

Therefore we see that the critical exponent for the heat capacity is α = 1/2. For other
critical exponents, we add a magnetic field, so that

f(m,T ) = a(T )m2 + cm6 −Bm (66)

For the critical exponent δ we go to the phase transition so a(T ) = 0 and we see how the
equilibrium magnetization varies. We find

∂f

∂m
= 6cm5 −B → B = 6cm5 (67)

so that δ = 5. Then finally restoring a(T ) we find

∂f

∂m
= 2α(T )m+ 6cm5 −B → B = 2a(T )m+ 6cm5 (68)

Then we probe how m varies with B, finding

χ =
∂m

∂B
=

1

2a(T ) + 30cm4
(69)

Therefore near the phase transition χ ∼ 1/(Tc − T ) so γ = 1.
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