
Critical Phenomena - Solutions to Exercise Set 3

6) Superfluid order parameter

a) For a space-independent order-parameter the free energy reduces to

f = a(T ) |ψ|2 + b |ψ|4 (70)

where f = F/V is the free energy per unit volume. Remembering that ψ and ψ∗ are
independent variables in complex analysis, we see that

∂f

∂ψ
= ψ∗ (a(T ) + 2b |ψ|2

)
(71)

So we have minima at ψ = 0 and |ψ| =
√

−a(T )
2b

. Therefore we have a phase transition

as a(T ) changes sign. This is associated with spontaneous symmetry breaking; in fact
the free energy has a symmetry ψ → eiθψ (this is a U(1) symmetry as eiθ ∈ U(1)).
The vacuum ψ = 0 is symmetric under this; however on the other side the vacuum is

ψ = eiφ
√

−a(T )
2b

for an arbitrary φ, which is not invariant under the symmetry.

Again expanding a(T ) = a(T − Tc) for some constant a > 0, we see that |ψ| ∼
√
T − Tc

so the critical exponent β = 1/2. Substituting back into the free energy, we see that

f = −a(T )2

4b
and therefore C ∼ −T ∂2f

∂T 2 ∼ constant. Therefore α = 0. To compute the
other two critical exponent we add a linear term −B |ψ| to the free energy. At the phase
transition a(T ) = 0 so f = −B |ψ| + b |ψ|4. Minimising wrt |ψ| we find |ψ| ∼ B1/3 so
δ = 3. Finally, keeping only the smallest terms, f = −B |ψ| + a(T ) |ψ|2 so m ∼ B

T−Tc .

Therefore χ = ∂m
∂B

|T∼ 1
T−Tc . So γ = 1. These are the same critical exponents as for the

mean field Ising model.

The magnetic term In fact B |ψ| is not a good magnetic term, because |ψ| > 0 while
we would expect a magnetic field to force the order parameter to align in the same
direction. To achieve this, pick B complex and write the magnetic term as −(B∗ψ +
Bψ∗) ∝ − cosφB − φψ where φX is the complex phase of variable. Now then the phase
of ψ wants to align with B and this is a better magnetic field term. In any case critical
exponents are robust, so both these terms give the same answer.

b) We expand the field in momentum space,

ψ(x) =

∫
dk

2π
eikxψ̃(k) (72)

Then we can substitute into the free energy and we obtain,

F =

∫
dk

2π

(
a(T )− γk2

) ∣∣∣ψ̃(k)∣∣∣2+
+

∫
dk1
2π

dk2
2π

dk3
2π

dk4
2π

2πδ(k1 + k2 − k3 − k4) (b+ µk1k2k3k4)ψ̃(k1)ψ̃(k2)ψ̃(k3)
∗ψ̃(k4)

∗

(73)
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where we used the definition of the delta function, δ(k) =
∫

dx
2π
eikx.

c) If only one Fourier mode contributes, this means that we can write the ansatz ψ(x) =
Aeikx. Substituting into the free energy, we find for f = F/V

f = (a(T )− γk2) |A|2 + (b+ µk4) |A|4 (74)

To minimize f we differentiate wrt k and |A| and we see that the minimum is achieved

∂f

∂k
= −2γk |A|2 + 4µk3 |A|4 = 0 → |A| = 0, k = 0, k2 =

γ

2µ |A|2
(75)

and
∂f

∂ |A|
= 2 |A|

[
(a(T )− γk2) + 2 |A|2 (b+ µk4)

]
= 0 (76)

So we find three solutions. The first one is |A| = 0, the second one is k = 0, |A|2 = −a(T )
2b

,

while the third solution is k = − γb
µa(T )

, |A|2 = −a(T )
2b

. The latter two exist only for

a(T ) < 0. Therefore we can check that the global minimum is ψ = 0 for a(T ) > 0 and
the third solution for a(T ) < 0. We therefore have a phase transition at a(T ) = 0. The
choice of ansatz for ψ breaks the U(1) symmetry explicitly, but we still have a symmetry
k → −k because the solutions only depend on k2. This Z2 symmetry is spontaneously
broken.

Bonus In fact I confess that I made a mistake in writing down the exercise and that the

last term should have been
∣∣∣d2ψdx2 ∣∣∣2 instead of

∣∣dψ
dx

∣∣4. So we work out this case as well.

In the momentum space free energy this term would simply give rise to a term µk4
∣∣∣ψ̃(k)∣∣∣2.

As for part c) the situation is not so different. We have

f = (a(T )− γk2 + µk4) |A|2 + b |A|4 (77)

So that we find

∂f

∂k
= (−2γ + 4µk2)k |A|2 ∂f

∂ |A|
= 2 |A|

[
(a(T )− γk2 + µk4) + 2b |A|2

]
(78)

So we find again three critical points. One of them is |A| = 0 while the other two are

k2 = γ
2µ
, |A| = −2a(T )+γ2/(2µ)

4b
(for a(T ) < γ2/(4µ)) and k = 0, |A|2 = −a(T )

2b
for a(T ) < 0.

However we can check that the global minimum is ψ = 0 for a(T ) > γ2/(4µ) and the
second solution (with k ̸= 0) for a(T ) < γ2/(4µ). So we have a single phase transition at
a(T ) = γ2/(4µ).

7) Wick’s identity

a) The condition ⟨1⟩ = 1 means that

Z =

∫ +∞

−∞
dNϕ exp

[
−1

2
ϕ ·G−1 · ϕ

]
(79)
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In order to compute this note that ϕ ·G−1 · ϕ ≡
∑

ij ϕi(G
−1)ijϕj is symmetric under the

exchange of ϕi and ϕj so we may assume without loss of generality that G−1 is symmetric.
Therefore it can be diagonalized, G−1 = OTDO where D is diagonal and O orthogonal.
Now we make the change of variables ϕ̃ = Oϕ. The Jacobian of this transformation is
|detO| = 1 because O is orthogonal, so we find,

Z =

∫ +∞

−∞
dN ϕ̃ exp

[
−1

2
ϕ̃ ·D · ϕ̃

]
(80)

The diagonal entries of D are simply the eigenvalues λi of G−1, so that the integral
factorizes,

Z =
∏
i

∫ +∞

−∞
dϕ̃i exp

[
−1

2
λiϕ̃

2
i

]
=
∏
i

√
2π

λi
= (2π)N/2(detG)1/2 (81)

where now no summation is implied, and we computed the Gaussian integrals explicitly.
The final equality follows because

∏
i λi = det (G−1) = (detG)−1.

b) As suggested by the hint, we add a term J · ϕ ≡
∑

i Jiϕi and define,

Z[J ] =

∫ +∞

−∞
dNϕ exp

[
−1

2
ϕ ·G−1 · ϕ+ J · ϕ

]
(82)

Therefore we find

∂

∂Ji

∂

∂Jj
Z[J ] =

1

Z

∫ +∞

−∞
dNϕ ϕiϕj exp

[
−1

2
ϕ ·G−1 · ϕ+ J · ϕ

]
(83)

So that therefore,

⟨ϕiϕj⟩ =
1

Z

∂

∂Ji

∂

∂Jj
Z[J ]

∣∣∣∣
J=0

(84)

Now we compute Z[J ] explicitly. To do so, we complete the square,

−1

2
ϕTG−1ϕ+ JTϕ = −1

2
(ϕ−GJ)TG−1(ϕ−GJ) +

1

2
JTGJ (85)

where we used matrix-vector notation. Substituting into Z[J ] and changing variables
ϕ→ ϕ−GJ we see that Z[J ] reduces to Z times a prefactor,

Z[J ] = exp

(
1

2
JTGJ

)
Z (86)

Now we can compute the derivatives explicitly and we find,

⟨ϕiϕj⟩ =
1

Z

∂

∂Ji

∂

∂Jj
Z[J ]

∣∣∣∣
J=0

= Gij (87)

c) We’ve basically done all the work already in part b). Using the notation of the previous
section we have 〈

exp

(∑
i

Aiϕi

)〉
=

1

Z
× Z[A] = exp

(
1

2
ATGA

)
(88)

where we used the explicit form of Z[A]. The result then follows because we have shown
that ⟨ϕiϕj⟩ = Gij.
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8) Asymptotic behaviour of the Green’s function

a) Since both k2 and the integral measure are rotationally invariant, for each fixed x we
are free to rotate the coordinate system of the k so that x = (0, 0, r) with r = |x| > 0.
Then we see that the integral only depends on r.

The integral identity is valid for all A > 0 such that the integral is convergent. Since
k2 + 1/ξ2 > 0 we can apply it with A = k2 + 1/ξ2 and find,

G(x) =

∫ ∞

0

dt

∫
ddk

(2π)d
e−ik·xe−t(k

2+1/ξ2) =

∫ ∞

0

dt
1

(4πt)d/2
e−

r2

4t
−t/ξ2 (89)

where the inner integral is nothing but the Fourier transform of a d-dimensional Gaussian,
which can be computed by completing the square:∫ +∞

−∞
dk e−ikxe−bk

2

=

√
π

b
e−

x2

4b (90)

Therefore G(r) =
∫∞
0
dt exp (−S(t)) where

S(t) =
d

2
log (4πt) +

r2

4t
+ t/ξ2 (91)

b) Differentiating wrt t, we find

S ′(t) =
d

2t
− r2

4t2
+ 1/ξ2 = 0 → t∗ =

r2

d±
√
d2 + 4r2/ξ2

(92)

Since the range of integration is t > 0 only the + solution is acceptable. Then we
approximate, ∫ ∞

0

dt e−S(t) ≈
∫ ∞

0

dt e−S(t∗)−S
′′(t∗)t2/2 =

√
π

2S ′′(t∗)
e−S(t∗) (93)

Note that we also had to approximate the integration interval, otherwise we would have
been unable to perform the integration explicitly.

Now if r ≪ ξ then t∗ ≈ r2

2d
and we find S ′′(t∗) =

2d3

r4
, while

S(t∗) =
d

2
+

r2

2dξ2
+
d

2
log

πr2

d
≈ const + d log r (94)

Therefore we find

G(r) ∼ 1

rd−2
(95)

On the other hand if r ≫ ξ we find t∗ ≈ 2
rξ

and S ′′(t∗) = 4
ξ3r

. Moreover S(t∗) =
r
ξ
+ d

2
log (ξr) so that overall

G(r) ∼ e−r/ξ

r(d−1)/2
(96)
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9) More asymptotic behaviour

a) This is just spherical coordinates in d dimensions, we can look up the integration
measure. The angular integration trivially gives the area of the d-sphere, so that

Id =
Sd

(2π)d

∫ ∞

0

dk
kd−1

(k2 + 1/ξ2)2
(97)

The denominator is always positive and bounded below, so it gives no issues. Therefore
the only problems in this integral could arise as k → ∞.

b) The divergences arise as k → ∞, so for large enough k we can ignore the 1/ξ2 factor
in the denominator, and therefore,

Id ∼
∫ ∞

0

dk kd−5 ∼ kd−4|∞0 = ∞ (98)

for d > 4. So introducing a momentum cutoff Λ we find

Id ∼
Sd

(2π)d

∫ Λ

0

dk kd−5 ∼ Sd
(2π)d

Λd−4 (99)

c) The same calculation for d < 4 shows that for large k the integral stays finite. In fact
we can extract the dimensional dependence of Id by performing a change of variables.
Setting u = ξk, we find

Id =
Sd

(2π)d
ξ4−d

∫ ∞

0

du
ud−1

(u2 + 1)2
(100)

where the u integral is a finite number for d < 4.
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