Critical Phenomena - Solutions to Exercise Set 3

6) Superfluid order parameter

a) For a space-independent order-parameter the free energy reduces to

$$
\begin{equation*}
f=a(T)|\psi|^{2}+b|\psi|^{4} \tag{70}
\end{equation*}
$$

where $f=F / V$ is the free energy per unit volume. Remembering that ψ and ψ^{*} are independent variables in complex analysis, we see that

$$
\begin{equation*}
\frac{\partial f}{\partial \psi}=\psi^{*}\left(a(T)+2 b|\psi|^{2}\right) \tag{71}
\end{equation*}
$$

So we have minima at $\psi=0$ and $|\psi|=\sqrt{\frac{-a(T)}{2 b}}$. Therefore we have a phase transition as $a(T)$ changes sign. This is associated with spontaneous symmetry breaking; in fact the free energy has a symmetry $\psi \rightarrow e^{i \theta} \psi$ (this is a $\mathrm{U}(1)$ symmetry as $e^{i \theta} \in \mathrm{U}(1)$). The vacuum $\psi=0$ is symmetric under this; however on the other side the vacuum is $\psi=e^{i \varphi} \sqrt{\frac{-a(T)}{2 b}}$ for an arbitrary φ, which is not invariant under the symmetry.
Again expanding $a(T)=a\left(T-T_{c}\right)$ for some constant $a>0$, we see that $|\psi| \sim \sqrt{T-T_{c}}$ so the critical exponent $\beta=1 / 2$. Substituting back into the free energy, we see that $f=-\frac{a(T)^{2}}{4 b}$ and therefore $C \sim-T \frac{\partial^{2} f}{\partial T^{2}} \sim$ constant. Therefore $\alpha=0$. To compute the other two critical exponent we add a linear term $-B|\psi|$ to the free energy. At the phase transition $a(T)=0$ so $f=-B|\psi|+b|\psi|^{4}$. Minimising wrt $|\psi|$ we find $|\psi| \sim B^{1 / 3}$ so $\delta=3$. Finally, keeping only the smallest terms, $f=-B|\psi|+a(T)|\psi|^{2}$ so $m \sim \frac{B}{T-T_{c}}$. Therefore $\chi=\left.\frac{\partial m}{\partial B}\right|_{T} \sim \frac{1}{T-T_{c}}$. So $\gamma=1$. These are the same critical exponents as for the mean field Ising model.
The magnetic term In fact $B|\psi|$ is not a good magnetic term, because $|\psi|>0$ while we would expect a magnetic field to force the order parameter to align in the same direction. To achieve this, pick B complex and write the magnetic term as $-\left(B^{*} \psi+\right.$ $\left.B \psi^{*}\right) \propto-\cos \varphi_{B}-\varphi_{\psi}$ where φ_{X} is the complex phase of variable. Now then the phase of ψ wants to align with B and this is a better magnetic field term. In any case critical exponents are robust, so both these terms give the same answer.
b) We expand the field in momentum space,

$$
\begin{equation*}
\psi(x)=\int \frac{d k}{2 \pi} e^{i k x} \widetilde{\psi}(k) \tag{72}
\end{equation*}
$$

Then we can substitute into the free energy and we obtain,

$$
\begin{align*}
F & =\int \frac{d k}{2 \pi}\left(a(T)-\gamma k^{2}\right)|\widetilde{\psi}(k)|^{2}+ \\
& +\int \frac{d k_{1}}{2 \pi} \frac{d k_{2}}{2 \pi} \frac{d k_{3}}{2 \pi} \frac{d k_{4}}{2 \pi} 2 \pi \delta\left(k_{1}+k_{2}-k_{3}-k_{4}\right)\left(b+\mu k_{1} k_{2} k_{3} k_{4}\right) \widetilde{\psi}\left(k_{1}\right) \widetilde{\psi}\left(k_{2}\right) \widetilde{\psi}\left(k_{3}\right)^{*} \widetilde{\psi}\left(k_{4}\right)^{*} \tag{73}
\end{align*}
$$

where we used the definition of the delta function, $\delta(k)=\int \frac{d x}{2 \pi} e^{i k x}$.
c) If only one Fourier mode contributes, this means that we can write the ansatz $\psi(x)=$ $A e^{i k x}$. Substituting into the free energy, we find for $f=F / V$

$$
\begin{equation*}
f=\left(a(T)-\gamma k^{2}\right)|A|^{2}+\left(b+\mu k^{4}\right)|A|^{4} \tag{74}
\end{equation*}
$$

To minimize f we differentiate wrt k and $|A|$ and we see that the minimum is achieved

$$
\begin{equation*}
\frac{\partial f}{\partial k}=-2 \gamma k|A|^{2}+4 \mu k^{3}|A|^{4}=0 \quad \rightarrow \quad|A|=0, \quad k=0, \quad k^{2}=\frac{\gamma}{2 \mu|A|^{2}} \tag{75}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial f}{\partial|A|}=2|A|\left[\left(a(T)-\gamma k^{2}\right)+2|A|^{2}\left(b+\mu k^{4}\right)\right]=0 \tag{76}
\end{equation*}
$$

So we find three solutions. The first one is $|A|=0$, the second one is $k=0,|A|^{2}=-\frac{a(T)}{2 b}$, while the third solution is $k=-\frac{\gamma b}{\mu a(T)},|A|^{2}=-\frac{a(T)}{2 b}$. The latter two exist only for $a(T)<0$. Therefore we can check that the global minimum is $\psi=0$ for $a(T)>0$ and the third solution for $a(T)<0$. We therefore have a phase transition at $a(T)=0$. The choice of ansatz for ψ breaks the $\mathrm{U}(1)$ symmetry explicitly, but we still have a symmetry $k \rightarrow-k$ because the solutions only depend on k^{2}. This \mathbb{Z}_{2} symmetry is spontaneously broken.

Bonus In fact I confess that I made a mistake in writing down the exercise and that the last term should have been $\left|\frac{d^{2} \psi}{d x^{2}}\right|^{2}$ instead of $\left|\frac{d \psi}{d x}\right|^{4}$. So we work out this case as well.
In the momentum space free energy this term would simply give rise to a term $\mu k^{4}|\widetilde{\psi}(k)|^{2}$. As for part c) the situation is not so different. We have

$$
\begin{equation*}
f=\left(a(T)-\gamma k^{2}+\mu k^{4}\right)|A|^{2}+b|A|^{4} \tag{77}
\end{equation*}
$$

So that we find

$$
\begin{equation*}
\frac{\partial f}{\partial k}=\left(-2 \gamma+4 \mu k^{2}\right) k|A|^{2} \quad \frac{\partial f}{\partial|A|}=2|A|\left[\left(a(T)-\gamma k^{2}+\mu k^{4}\right)+2 b|A|^{2}\right] \tag{78}
\end{equation*}
$$

So we find again three critical points. One of them is $|A|=0$ while the other two are $k^{2}=\frac{\gamma}{2 \mu},|A|=\frac{-2 a(T)+\gamma^{2} /(2 \mu)}{4 b}\left(\right.$ for $\left.a(T)<\gamma^{2} /(4 \mu)\right)$ and $k=0,|A|^{2}=-\frac{a(T)}{2 b}$ for $a(T)<0$. However we can check that the global minimum is $\psi=0$ for $a(T)>\gamma^{2} /(4 \mu)$ and the second solution (with $k \neq 0$) for $a(T)<\gamma^{2} /(4 \mu)$. So we have a single phase transition at $a(T)=\gamma^{2} /(4 \mu)$.

7) Wick's identity

a) The condition $\langle 1\rangle=1$ means that

$$
\begin{equation*}
Z=\int_{-\infty}^{+\infty} d^{N} \phi \exp \left[-\frac{1}{2} \phi \cdot G^{-1} \cdot \phi\right] \tag{79}
\end{equation*}
$$

In order to compute this note that $\phi \cdot G^{-1} \cdot \phi \equiv \sum_{i j} \phi_{i}\left(G^{-1}\right)_{i j} \phi_{j}$ is symmetric under the exchange of ϕ_{i} and ϕ_{j} so we may assume without loss of generality that G^{-1} is symmetric. Therefore it can be diagonalized, $G^{-1}=O^{T} D O$ where D is diagonal and O orthogonal. Now we make the change of variables $\tilde{\phi}=O \phi$. The Jacobian of this transformation is $|\operatorname{det} O|=1$ because O is orthogonal, so we find,

$$
\begin{equation*}
Z=\int_{-\infty}^{+\infty} d^{N} \tilde{\phi} \exp \left[-\frac{1}{2} \tilde{\phi} \cdot D \cdot \tilde{\phi}\right] \tag{80}
\end{equation*}
$$

The diagonal entries of D are simply the eigenvalues λ_{i} of G^{-1}, so that the integral factorizes,

$$
\begin{equation*}
Z=\prod_{i} \int_{-\infty}^{+\infty} d \tilde{\phi}_{i} \exp \left[-\frac{1}{2} \lambda_{i} \tilde{\phi}_{i}^{2}\right]=\prod_{i} \sqrt{\frac{2 \pi}{\lambda_{i}}}=(2 \pi)^{N / 2}(\operatorname{det} G)^{1 / 2} \tag{81}
\end{equation*}
$$

where now no summation is implied, and we computed the Gaussian integrals explicitly. The final equality follows because $\prod_{i} \lambda_{i}=\operatorname{det}\left(G^{-1}\right)=(\operatorname{det} G)^{-1}$.
b) As suggested by the hint, we add a term $J \cdot \phi \equiv \sum_{i} J_{i} \phi_{i}$ and define,

$$
\begin{equation*}
Z[J]=\int_{-\infty}^{+\infty} d^{N} \phi \exp \left[-\frac{1}{2} \phi \cdot G^{-1} \cdot \phi+J \cdot \phi\right] \tag{82}
\end{equation*}
$$

Therefore we find

$$
\begin{equation*}
\frac{\partial}{\partial J_{i}} \frac{\partial}{\partial J_{j}} Z[J]=\frac{1}{Z} \int_{-\infty}^{+\infty} d^{N} \phi \phi_{i} \phi_{j} \exp \left[-\frac{1}{2} \phi \cdot G^{-1} \cdot \phi+J \cdot \phi\right] \tag{83}
\end{equation*}
$$

So that therefore,

$$
\begin{equation*}
\left\langle\phi_{i} \phi_{j}\right\rangle=\left.\frac{1}{Z} \frac{\partial}{\partial J_{i}} \frac{\partial}{\partial J_{j}} Z[J]\right|_{J=0} \tag{84}
\end{equation*}
$$

Now we compute $Z[J]$ explicitly. To do so, we complete the square,

$$
\begin{equation*}
-\frac{1}{2} \phi^{T} G^{-1} \phi+J^{T} \phi=-\frac{1}{2}(\phi-G J)^{T} G^{-1}(\phi-G J)+\frac{1}{2} J^{T} G J \tag{85}
\end{equation*}
$$

where we used matrix-vector notation. Substituting into $Z[J]$ and changing variables $\phi \rightarrow \phi-G J$ we see that $Z[J]$ reduces to Z times a prefactor,

$$
\begin{equation*}
Z[J]=\exp \left(\frac{1}{2} J^{T} G J\right) Z \tag{86}
\end{equation*}
$$

Now we can compute the derivatives explicitly and we find,

$$
\begin{equation*}
\left\langle\phi_{i} \phi_{j}\right\rangle=\left.\frac{1}{Z} \frac{\partial}{\partial J_{i}} \frac{\partial}{\partial J_{j}} Z[J]\right|_{J=0}=G_{i j} \tag{87}
\end{equation*}
$$

c) We've basically done all the work already in part b). Using the notation of the previous section we have

$$
\begin{equation*}
\left\langle\exp \left(\sum_{i} A_{i} \phi_{i}\right)\right\rangle=\frac{1}{Z} \times Z[A]=\exp \left(\frac{1}{2} A^{T} G A\right) \tag{88}
\end{equation*}
$$

where we used the explicit form of $Z[A]$. The result then follows because we have shown that $\left\langle\phi_{i} \phi_{j}\right\rangle=G_{i j}$.

8) Asymptotic behaviour of the Green's function

a) Since both k^{2} and the integral measure are rotationally invariant, for each fixed \mathbf{x} we are free to rotate the coordinate system of the \mathbf{k} so that $\mathbf{x}=(0,0, r)$ with $r=|\mathbf{x}|>0$. Then we see that the integral only depends on r.

The integral identity is valid for all $A>0$ such that the integral is convergent. Since $k^{2}+1 / \xi^{2}>0$ we can apply it with $A=k^{2}+1 / \xi^{2}$ and find,

$$
\begin{equation*}
G(\mathbf{x})=\int_{0}^{\infty} d t \int \frac{d^{d} k}{(2 \pi)^{d}} e^{-i \mathbf{k} \cdot \mathbf{x}} e^{-t\left(k^{2}+1 / \xi^{2}\right)}=\int_{0}^{\infty} d t \frac{1}{(4 \pi t)^{d / 2}} e^{-\frac{r^{2}}{4 t}-t / \xi^{2}} \tag{89}
\end{equation*}
$$

where the inner integral is nothing but the Fourier transform of a d-dimensional Gaussian, which can be computed by completing the square:

$$
\begin{equation*}
\int_{-\infty}^{+\infty} d k e^{-i k x} e^{-b k^{2}}=\sqrt{\frac{\pi}{b}} e^{-\frac{x^{2}}{4 b}} \tag{90}
\end{equation*}
$$

Therefore $G(r)=\int_{0}^{\infty} d t \exp (-S(t))$ where

$$
\begin{equation*}
S(t)=\frac{d}{2} \log (4 \pi t)+\frac{r^{2}}{4 t}+t / \xi^{2} \tag{91}
\end{equation*}
$$

b) Differentiating wrt t, we find

$$
\begin{equation*}
S^{\prime}(t)=\frac{d}{2 t}-\frac{r^{2}}{4 t^{2}}+1 / \xi^{2}=0 \quad \rightarrow \quad t_{*}=\frac{r^{2}}{d \pm \sqrt{d^{2}+4 r^{2} / \xi^{2}}} \tag{92}
\end{equation*}
$$

Since the range of integration is $t>0$ only the + solution is acceptable. Then we approximate,

$$
\begin{equation*}
\int_{0}^{\infty} d t e^{-S(t)} \approx \int_{0}^{\infty} d t e^{-S\left(t_{*}\right)-S^{\prime \prime}\left(t_{*}\right) t^{2} / 2}=\sqrt{\frac{\pi}{2 S^{\prime \prime}\left(t_{*}\right)}} e^{-S\left(t_{*}\right)} \tag{93}
\end{equation*}
$$

Note that we also had to approximate the integration interval, otherwise we would have been unable to perform the integration explicitly.
Now if $r \ll \xi$ then $t_{*} \approx \frac{r^{2}}{2 d}$ and we find $S^{\prime \prime}\left(t_{*}\right)=\frac{2 d^{3}}{r^{4}}$, while

$$
\begin{equation*}
S\left(t_{*}\right)=\frac{d}{2}+\frac{r^{2}}{2 d \xi^{2}}+\frac{d}{2} \log \frac{\pi r^{2}}{d} \approx \mathrm{const}+d \log r \tag{94}
\end{equation*}
$$

Therefore we find

$$
\begin{equation*}
G(r) \sim \frac{1}{r^{d-2}} \tag{95}
\end{equation*}
$$

On the other hand if $r \gg \xi$ we find $t_{*} \approx \frac{2}{r \xi}$ and $S^{\prime \prime}\left(t_{*}\right)=\frac{4}{\xi^{3} r}$. Moreover $S\left(t_{*}\right)=$ $\frac{r}{\xi}+\frac{d}{2} \log (\xi r)$ so that overall

$$
\begin{equation*}
G(r) \sim \frac{e^{-r / \xi}}{r^{(d-1) / 2}} \tag{96}
\end{equation*}
$$

9) More asymptotic behaviour

a) This is just spherical coordinates in d dimensions, we can look up the integration measure. The angular integration trivially gives the area of the d-sphere, so that

$$
\begin{equation*}
I_{d}=\frac{S_{d}}{(2 \pi)^{d}} \int_{0}^{\infty} d k \frac{k^{d-1}}{\left(k^{2}+1 / \xi^{2}\right)^{2}} \tag{97}
\end{equation*}
$$

The denominator is always positive and bounded below, so it gives no issues. Therefore the only problems in this integral could arise as $k \rightarrow \infty$.
b) The divergences arise as $k \rightarrow \infty$, so for large enough k we can ignore the $1 / \xi^{2}$ factor in the denominator, and therefore,

$$
\begin{equation*}
\left.I_{d} \sim \int_{0}^{\infty} d k k^{d-5} \sim k^{d-4}\right|_{0} ^{\infty}=\infty \tag{98}
\end{equation*}
$$

for $d>4$. So introducing a momentum cutoff Λ we find

$$
\begin{equation*}
I_{d} \sim \frac{S_{d}}{(2 \pi)^{d}} \int_{0}^{\Lambda} d k k^{d-5} \sim \frac{S_{d}}{(2 \pi)^{d}} \Lambda^{d-4} \tag{99}
\end{equation*}
$$

c) The same calculation for $d<4$ shows that for large k the integral stays finite. In fact we can extract the dimensional dependence of I_{d} by performing a change of variables. Setting $u=\xi k$, we find

$$
\begin{equation*}
I_{d}=\frac{S_{d}}{(2 \pi)^{d}} \xi^{4-d} \int_{0}^{\infty} d u \frac{u^{d-1}}{\left(u^{2}+1\right)^{2}} \tag{100}
\end{equation*}
$$

where the u integral is a finite number for $d<4$.

