Critical Phenomena - Solutions to Exercise Set 3

6) Superfluid order parameter
a) For a space-independent order-parameter the free energy reduces to

f=a(T)[Y]* + by (70)

where f = F/V is the free energy per unit volume. Remembering that ¢) and ¢* are
independent variables in complex analysis, we see that

of

== = (a(T) + 2b|y| 71
gy = ¥ (@D +2[f) (71)
So we have minima at ¢y = 0 and |¢| = %E)T). Therefore we have a phase transition

as a(T') changes sign. This is associated with spontaneous symmetry breaking; in fact
the free energy has a symmetry ¢ — €9 (this is a U(1) symmetry as ¢ € U(1)).
The vacuum ¢ = 0 is symmetric under this; however on the other side the vacuum is

—a

= e % for an arbitrary ¢, which is not invariant under the symmetry.

Again expanding a(T") = a(T — T.) for some constant a > 0, we see that |¢| ~ /T — T,
so the critical exponent 8 = 1/2. Substituting back into the free energy, we see that

f= —G(Z;J)Q and therefore C' ~ —T % ~ constant. Therefore « = 0. To compute the

other two critical exponent we add a linear term — B [¢| to the free energy. At the phase
transition a(T) = 0 so f = —B|y| + b|[*. Minimising wrt || we find || ~ BY? so

- . . - 2 B
6 = 3. Finally, keeping only the smallest terms, f = —B [¢)| + a(T) |[¢[" so m ~ 7=
Therefore y = ‘g—’ghw ﬁ So v = 1. These are the same critical exponents as for the

mean field Ising model.

The magnetic term In fact B|y| is not a good magnetic term, because || > 0 while
we would expect a magnetic field to force the order parameter to align in the same
direction. To achieve this, pick B complex and write the magnetic term as —(B*y +
By*) x —cospp — @y where px is the complex phase of variable. Now then the phase
of ¢ wants to align with B and this is a better magnetic field term. In any case critical
exponents are robust, so both these terms give the same answer.

b) We expand the field in momentum space,

= [ ek 2
wie) = [ Gretin (72)
Then we can substitute into the free energy and we obtain,
dk ~ 2
F= / £ (alm) = k) [G)| +
dk: dks diy dk ~
+ / 2—;2—;2—;2—; 218 (k1 + ko — ks — ka) (b+ pk1kakska) 0 (k)0 (k)0 (ks)* ¥ (ks )*

(73)
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where we used the definition of the delta function, d(k) = [ e,

c) If only one Fourier mode contributes, this means that we can write the ansatz ¢ (x) =
Aet*® . Substituting into the free energy, we find for f = F/V

= (a(T) = k) |AP + (0 + pk") | A" (74)

To minimize f we differentiate wrt k and |A| and we see that the minimum is achieved

of g
= =29k A" +4pk’ A" =0 = Al=0, k=0, F¥=—7= (75
o = 2k |AP + 48 4] A e ()
and o7
alA > Al [(a(T) = 7k*) + 2 |AP* (b + uk*)] = 0 (76)
So we find three solutions. The first one is |A| — 0, the second one is k = 0, |A|* = — g),
while the third solution is k = |A|? g). The latter two exist only for

a(T)’
a(T) < 0. Therefore we can check ghat) the global minimum is ¢ = 0 for a(7T") > 0 and
the third solution for a(7") < 0. We therefore have a phase transition at a(7") = 0. The
choice of ansatz for ¢ breaks the U(1) symmetry explicitly, but we still have a symmetry
k — —k because the solutions only depend on k?. This Z, symmetry is spontaneously
broken.

Bonus In fact I confess that I made a mistake in writing down the exercise and that the

2
d2yp|© . d1/1‘4
2| 1nstead of ‘ T

last term should have been . So we work out this case as well.

am)

In the momentum space free energy this term would simply give rise to a term pk*

As for part ¢) the situation is not so different. We have
f = (@(T) =7k + pk") |AF + b |A]* (77)
So that we find

of
ok

af

2y 4 4k k | A2
= (=2v +4pk”)k |A] D1A]

= 2|A| [(a(T) = yk* + uk*) + 20 |A]"]  (78)
So we ﬁnd again three critical points. One of them is |A] = 0 while the other two are
K2 = 35, JA| = 20N (for a(T) < 42/ (4p)) and k = 0, |A]® = (T) <0.
However we can check that the global minimum is ¢ = 0 for a(T) > v*/(4u) and the
second solution (with &k # 0) for a(T) < ~v*/(4u). So we have a single phase transition at

a(T) =~/ (4p).

7) Wick’s identity

a) The condition (1) = 1 means that

7 = /+OO dV ¢ exp [—%¢ .G7h. qﬁ] (79)

o0
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In order to compute this note that ¢ - G711 - ¢ = Zij ¢i(G™1);;0; is symmetric under the
exchange of ¢; and ¢; so we may assume without loss of generality that G~! is symmetric.
Therefore it can be diagonalized, G~ = OT DO where D is diagonal and O orthogonal.
Now we make the change of variables ¢ = O¢. The Jacobian of this transformation is
|det O] = 1 because O is orthogonal, so we find,

7 = /M dN¢ exp [—%é .D- 95] (80)

[e.9]

The diagonal entries of D are simply the eigenvalues \; of G71, so that the integral
factorizes,

7 = H/_:O de; exp l—%)\zgﬁf] = H \/% — (27)/2(det @) /2 (&1)

where now no summation is implied, and we computed the Gaussian integrals explicitly.

The final equality follows because [[; A\; = det (G™1) = (det G) .
b) As suggested by the hint, we add a term J - ¢ = ), Ji¢; and define,

+o0
Z[J] :/ dN ¢ exp [—%qf)-G_l-qﬂ—J-qb} (82)
Therefore we find
0 0 1 too N 1 4
So that therefore,
1 0 0
b — 7 4

Now we compute Z[J] explicitly. To do so, we complete the square,
1 1 1
—§¢TG’1¢ +JVp = —§(¢ —GNTG o -GJ) + 5JTGJ (85)

where we used matrix-vector notation. Substituting into Z[J] and changing variables
¢ — ¢ — GJ we see that Z[J] reduces to Z times a prefactor,

1
Z[J] = exp (§JTGJ) Z (86)
Now we can compute the derivatives explicitly and we find,
1 0 0
Qi) = s=—=—=—4|J = G; 87
<¢¢J> ZaJl(f?J] [ ]JZO J ( )

c) We've basically done all the work already in part b). Using the notation of the previous
section we have

<exp (Z Ai¢i>> = % x Z[A] = exp (%ATGA) (88)

where we used the explicit form of Z[A]. The result then follows because we have shown

that (¢i6;) = Gi;.
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8) Asymptotic behaviour of the Green’s function

a) Since both k% and the integral measure are rotationally invariant, for each fixed x we
are free to rotate the coordinate system of the k so that x = (0,0,r) with » = |x| > 0.
Then we see that the integral only depends on r.

The integral identity is valid for all A > 0 such that the integral is convergent. Since
k% +1/€%2 > 0 we can apply it with A = k? + 1/£? and find,

0 ddk‘ ) 9 ) [e%¢) 1 2 )
G(x) = / dt / e kXt H1/7) — / dt e~ t/E ]9
(x) 0 (2m)d 0 (47rt)d/2 (89)

where the inner integral is nothing but the Fourier transform of a d-dimensional Gaussian,
which can be computed by completing the square:

+o00o ) 22
/ dk e~ et = \/geélb (90)

Therefore G(r) = [;° dt exp (—S(t)) where

d 2
S(t) = = log (4nt) + L t/&? (91)
2 4t
b) Differentiating wrt ¢, we find
d r? 7
S't)=—-—+1/&=0 t. = 92
®) 2t 4t2+ /¢ - d+ \/d® + 42 /&2 (92)

Since the range of integration is ¢ > 0 only the + solution is acceptable. Then we
approximate,

dt —S(t) %/ dt —S(te)=S" ()82 /2 _ T —S(ts) 93
f e [ ae 251" (%)

Note that we also had to approximate the integration interval, otherwise we would have
been unable to perform the integration explicitly.
Now if r < £ then t, ~ % and we find S”(t,) = 2%43, while

d 1 d r?

7r
S(t*):§+2d£2+§10g7%const+dlogr (94)

Therefore we find

Gr) ~ le_g (95)
On the other hand if r > ¢ we find ¢, = 3—5 and S”(t,) = 5%. Moreover S(t.) =
¢t 2log (&) so that overall
-
G(r) ~ @i (96)
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9) More asymptotic behaviour

a) This is just spherical coordinates in d dimensions, we can look up the integration
measure. The angular integration trivially gives the area of the d-sphere, so that

Sd e kd_l
L= | e 67)

The denominator is always positive and bounded below, so it gives no issues. Therefore
the only problems in this integral could arise as k — oc.

b) The divergences arise as k — oo, so for large enough k we can ignore the 1/£2 factor
in the denominator, and therefore,

Iy~ / dk k5 ~ k0= 00 (98)
0
for d > 4. So introducing a momentum cutoff A we find

S A d—>5 Sd d—4
Iy~ — ~ —2 A
i~ /O AR~ (99)

c¢) The same calculation for d < 4 shows that for large k£ the integral stays finite. In fact
we can extract the dimensional dependence of I; by performing a change of variables.

Setting u = £k, we find
[ = i gi-a /Ood _ut (100)
Tt )y My

where the u integral is a finite number for d < 4.
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