
1 Gaussian integrals and Wick’s theorem

1.1 Gaussian integrals

Exercise 1.1. Compute the basic, one-dimensional Gaussian integral and show that it is
given by ∫ ∞

−∞
dx e−

1
2
λx2 =

√
2π

λ
, Re(λ) > 0 . (1)

The standard trick is to take the square and use polar coordinates.

Exercise 1.2. Show that∫ ∞
−∞

dx e−
1
2
λx2+ax =

√
2π

λ
exp

(
a2

2λ

)
, Re(λ) > 0 . (2)

Next, we turn to n-dimensional Gaussian integrals. We consider an element x of Rn and
a symmetric n × n matrix M and define a quadratic form xTMx. Integrating over Rn, we
obtain the Gaussian integral ∫

dnx exp

(
−1

2
xTMx

)
= N−1 . (3)

Exercise 1.3. Show that

N =

√
detM

(2π)n
. (4)

What are the conditions on the matrix M for the integral in eq. (3) to exist?

Exercise 1.4. Similarly, show that for a ∈ Rn and if M−1 exists,

N
∫

dnx exp

(
−1

2
xTMx+ aTx

)
= exp

(
1

2
aTM−1a

)
. (5)

Gaussian integrals appear in many areas of physics, for instance in statistical physics and
in path-integral quantization. In Feynman’s path-integral formulation of quantum mechanics,
one needs to compute an integral of the form

〈xf , tf |xi, ti〉 =

∫
Dx(t) eiS[x(t)] (6)

to obtain the amplitude that a particle which was at point xi at time ti can be found at
point xf at time tf , where S[x(t)] is the action associated with the path x(t) and the symbol
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∫
Dx(t) indicates that one should sum over all paths x(t) starting at x(ti) = xi and ending at

x(tf ) = xf .
As it stands, it is not clear what eq. (6) means. To define it, one discretizes time tk = ti+k·a

such than t0 = ti, tn+1 = tf . The integral over all paths takes the form∫
Dx(t) −→

n∏
k=1

∫
dxk =

∫
dnx , (7)

where xk = x(tk) is the position after k time steps. We see that we encounter integrals
over Rn as in eq. (3). To evaluate the oscillatory expression (6), one first computes it for
imaginary (Euclidean) time t = −iτ with τ ∈ R. Performing this so-called Wick rotation
leads to iS[x(t)]→ −SE[x(τ)] so that one can work with a real exponent as in eq. (3). After
performing the integrals and taking a→ 0 one then analytically continues the result back to
physical time values.1 Doing so, the path integral for a harmonic oscillator (or a free particle)
boils down to the evaluation of Gaussian integrals like in eq. (3).

The path integral formulation plays an important role in Quantum Field Theory (QFT),
where amongst others it forms the basis for numerical computations. In field theories one
integrates over all field configurations φ(t, ~x) instead of the path x(t). In discretized form, one
then integrates over the field values φi ≡ φ(ti, ~xi). The discrete set of points (ti, ~xi) is called
a lattice and to obtain the continuum result one takes the limit where the distance between
lattice points (the lattice spacing) goes to zero.

The simplest example of a field theory is the so-called free Klein-Gordon theory, with an
action given by:

S[φ] =

∫
d4x

(
∂µφ(x)∂µφ(x)−m2φ(x)2

)
, (8)

Exercise 1.5. Show that the Euclidean action for the free Klein-Gordon theory is given by:

SE[φ] =

∫
dτd3~x

(
∂µφ(x)∂µφ(x) +m2φ(x)2

)
, (9)

where we now contract with the Euclidean metric instead of the Minkowski metric.

Exercise 1.6. Consider the case of 0 + 1 space-time dimensions, argue that the action for
the discretized Klein-Gordon theory takes the following form:

SE[φ] =
∑
i

(
φi+1 − φi

a

)2

+m2φ2
i , (10)

where a = xi+1 − xi is the distance between neighbouring lattice points. How could one
write this in terms of a matrix M? (Hint: only the components Mi,i and Mi,i±1 are non-zero)

1It may be noted that the analytic continuation is not unique; different possibilities correspond to different
time orderings of operator expectation values (see later sections).

2



Exercise 1.7. Transform to momentum space using the discrete fourier transform

φ(xi) =
∑
m

φ̃(pm)eipmxi (11)

and take the limit of a going to zero. Show that this diagonalizes M , what are it’s eigenvalues?
(Hint: φ is real, thus φ(x) = φ(x)∗ and φ(x)2 = |φ(x)|2)

1.2 Generating function, Wick’s theorem

If we include the normalization factor N , we can view the integrand in eq. (3), viz.

ρ(x) = N exp

(
−1

2
xTMx

)
, (12)

as a probability distribution in Rn since it is normalized and strictly positive as long as M is
a real, symmetric and positive2 matrix. We can then compute expectation values as

〈A(x)〉 ≡
∫

dnx ρ(x)A(x) . (13)

The m-point correlation functions
〈xi1 . . . xim〉 (14)

play an important role when one computes path integrals and we now analyze them in detail.
The result is Wick’s theorem, which provides the basis for perturbative computations in QFT.

To obtain the expectation values in eq. (14), let us consider (bixi ≡
∑

i bixi)

Z(b) ≡ 〈ebixi〉 =

∫
dnx ρ(x)ebixi =

∑
m≥0

1

m!
bi1 . . . bim

∫
dnx ρ(x)xi1 . . . xim +O(b2ij) . (15)

The quantity Z(b) is the generating function of moments of the probability distribution ρ(x):

Z(b) =
∑
m≥0

1

m!
bi1 . . . bim 〈xi1 . . . xim〉+O(b2ij). (16)

The inverse relation can be written as

〈xi1 . . . xim〉 =

[
∂

∂bi1
. . .

∂

∂bim
Z(b)

]
b=0

. (17)

In general, for an arbitrary probability density ρ(x), Z(b) cannot be calculated exactly. But
it can easily be evaluated for the Gaussian probability distribution. According to eq. (5), the

2All its eigenvalues are strictly positive.
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generating function of the moments of the Gaussian distribution is

Z(b) = N
∫

dnx exp

(
−1

2
xTMx+ bTx

)
= 〈exp(bTx)〉

= exp

(
1

2
bTM−1b

)
.

(18)

The inverse relation is

〈xi1 . . . xim〉 =

[
∂

∂bi1
. . .

∂

∂bim
exp

{
1

2
bi(M

−1)ijbj

}]
b=0

. (19)

Exercise 1.8. Show that only the symmetric part of M contributes and that if M is sym-
metric and M−1 exists, then it is symmetric as well.

Exercise 1.9. Prove that:

∂
∂bi1

exp
{

1
2
bi(M

−1)ijbj
}

= (M−1)i1kbk exp
{

1
2
bi(M

−1)ijbj
}
,

∂
∂bi1

∂
∂bi2

exp
{

1
2
bi(M

−1)ijbj
}

=
[
(M−1)i1i2 + (M−1)i1kbk(M

−1)i2lbl

]
exp

{
1
2
bi(M

−1)ijbj
}
.

Exercise 1.10. Find a general expression for ∂
∂bi1

. . . ∂
∂bin

exp
{

1
2
bi(M

−1)ijbj
}

. [Hint: Looking

at the explicit expressions for the lowest few derivatives, you should observe a simple pattern,
which can then be established using induction. ]

Exercise 1.11. Use the previous results at b = 0, relevant for eq. (19), to verify that

〈xi1xi2〉 = (M−1)i1i2 ,

〈xi1xi2xi3xi4〉 = (M−1)i1i2(M
−1)i3i4 + (M−1)i1i3(M

−1)i2i4 + (M−1)i1i4(M
−1)i2i3 ,

(20)

and that the correlators of an odd number of points vanish,

〈xi1 . . . xi2m+1〉 = 0 . (21)

Exercise 1.12. Derive Wick’s theorem:

〈xi1 . . . xi2m〉 =
∑
P

〈xk1xk2〉 . . . 〈xk2m−1xk2m〉, (22)
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where the sum is over all pairings P , i.e. all possible ways to group the indices i1, i2, . . . , i2m
into m pairs (k1, k2), . . . , (k2m−1, k2m). The theorem states that for the Gaussian integral all
higher-point correlators reduce to products of the 2-point correlation function, which is given
by the inverse of the matrix in the exponent of the Gaussian integral:

〈xi1xi2〉 = (M−1)i1i2 . (23)

(As usual in mathematics, the proof of the final theorem is trivial after you have prepared it
with a highly non-trivial proof of a lemma, in our case the general form in Exercise 1.7.)

1.3 Adding a quartic term

Consider now a modified version of the generating function Z(b):

Zx4(b) = N
∫

dnx exp

(
−1

2
xTMx+ bTx− λ

4!

n∑
i=0

x4i

)
. (24)

Unfortunately we can not solve Zx4(b) analytically. In order to find the correlation functions
associated to this generating function, we must make an expansion around λ = 0. This ap-
proach forms the basis of perturbative QFT

Exercise 1.13. Show that Zx4(b) can be written in terms of Z(b) in the following way:

Zx4(b) = exp

(
− λ

4!

∑
i

∂4

∂b4i

)
Z(b) , (25)

where

exp

(
− λ

4!

∑
i

∂4

∂b4i

)
= 1− λ

4!

∑
i

∂4

∂b4i
+

(
λ

4!

)2∑
i

∑
j

∂4

∂b4i

∂4

∂b4j
+O(λ3) . (26)

Exercise 1.14. Show that the O(λ) contribution to 〈xi1xi2〉 is given by∑
j

λ

8
(M−1)i1i2(M

−1)2jj +
λ

2
(M−1)i1j(M

−1)jj(M
−1)ji2 . (27)

(Hint: Use Wick’s theorem for a 6-point correlator and set 4 of the indices to be equal)

Exercise 1.15. Argue that the O(λ) contribution to 〈xi1xi2xi3xi4〉 contains the following
term:

λ
∑
j

(M−1)i1j(M
−1)i2j(M

−1)i3j(M
−1)i4j . (28)
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