
2 Integrals over Grassmann variables

To construct a consistent quantum theory of fermionic fields, the field operators must fulfil
the anti-commutation relations{

ψα(x), ψ†β(y)
}

= δ(3)(~x− ~y ) δαβ , (1){
ψα(x), ψβ(y)

}
=
{
ψ†α(x), ψ†β(y)

}
= 0 ,

at equal times x0 = y0. To construct a path-integral representation of such a theory, one uses
anti-commutating variables, which are also called Grassmann numbers. They are introduced
and explored in this section. We consider a set of n such numbers ηi, i = 1 . . . n, which fulfil
the Grassmann algebra {

ηi, ηj
}

= 0 , (2)

implying that η2i = 0, which makes the algebra extremely simple. The most general function
of two Grassmann variables is

f(η1, η2) = f00 + f10 η1 + f01 η2 + f11 η1η2 , (3)

since η2η1 = −η1η2 and all higher-order terms vanish. The expansion coefficients are ordinary
numbers. The Taylor expansion of Grassmann functions is thus always finite and exact. In
the rest of this section, Latin letters refer to real or complex numbers, Greek letters denote
the Grassmann variables.

Exercise 2.1. The Grassmann algebra can be implemented using anti-commutating matri-
ces. Find a 2× 2 matrix representation for the case of a single Grassman number.

Exercise 2.2. Argue that the class of matrices found above cannot be used to implement
Grassmann algebra for the case of n = 2 and find a valid 4× 4 matrix representation.
Hint: Consider the ansatz η1 = θ1 ⊗M1 and η2 = M2 ⊗ θ2 where ηi are 2× 2 matrices of the
form found earlier and Mi are arbitrary 2× 2 matrices to be identified.

Exercise 2.3. Equation (3) shows that the n = 2 algebra is four-dimensional. What is the
dimension for general n?

The integral over a Grassmann function f(η) = a+ b η is defined as∫
dη f(η) ≡ b . (4)

Exercise 2.4. Show that, up to a normalization factor, this definition follows from the
requirements of linearity and invariance of the integral under a shift η → η + θ.

One can also define the derivative of a Grassmann function as

∂

∂η
f(η) =

∂

∂η
(a+ b η) ≡ b , (5)
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which happens to be the same as the integral. For multiple integrals and derivatives one needs
to adopt a sign convention. We define∫

dη2

∫
dη1 η1η2 ≡

∂

∂η2

∂

∂η1
η1η2 ≡ +1 , (6)

i.e. we perform the innermost integral (or derivative) first.

Exercise 2.5. Compute the Gaussian integrals

I(A) =

∫
dηn

∫
dηn−1· · ·

∫
dη1 e

−ηTAη , (7)

where η = (η1, . . . , ηn)T for n = 2, 3, 4. Hints: Taylor expand and note that only the terms
proportional to η1η2 . . . ηn contribute, which involve exactly one power of each variable. Note
also that A can be chosen anti-symmetric.

Under a variable change θ = aη, we have

1 =

∫
dθ θ =

∫
d(aη) aη (8)

⇒ d(aη) =
1

a
dη .

This is the opposite of the behaviour of regular (bosonic) integrals, where d(ax) = a dx. The
Grassmann integral behaves like a derivative under variable transformations, which may not
be surprising, since it is the same as the derivative.

Exercise 2.6. For a general variable transformation ξi = Bijηj, prove that

dξn . . . dξ1 = (detB)−1dηn . . . dη1 . (9)

Hint: proceed as in eq. (8), using ηi1 . . . ηin = εi1...inη1 . . . ηn.

To work with the complex-valued Dirac field, one introduces complex Grassmann variables

η ≡ 1√
2

(η1 + iη2) , η∗ ≡ 1√
2

(η1 − iη2) . (10)

One can treat η and η∗ as independent variables and define∫
dη∗dη η η∗ ≡ 1 . (11)

Exercise 2.7. Derive the following identities for Gaussian integrals with complex Grassmann
variables: ( n∏

i=1

∫
dη∗i

∫
dηi

)
e−η

†Aη = detA , (12)

2



( n∏
i=1

∫
dη∗i

∫
dηi

)
e−η

†Aη+η†θ+θ†η = detA e θ
†A−1θ , (13)

for a Hermitian matrix A. Hint: Derive eq. (12) by performing a change of variables which
diagonalizes A, and complete the square to obtain eq. (13).

Except for the normalization, the only difference to regular (bosonic) Gaussian integrals is the
appearance of detA instead of (detA)−1. As in the bosonic case, all moments can be obtained
by taking derivatives of eq. (13) with respect to θi and θ∗j .

Exercise 2.8. Use this technique to compute the integrals( n∏
k=1

∫
dη∗k

∫
dηk

)
e−η

†Aη ηiη
∗
j , (14)

( n∏
k=1

∫
dη∗k

∫
dηk

)
e−η

†Aη ηiη
∗
j ηlη

∗
m . (15)

Wick’s theorem for Grassmann integrals has thus exactly the same form as in the bosonic
case, but one needs to keep track of the minus signs which arise when variables are reordered.

Exercise 2.9. Dual numbers are a special case of Grassman algebra with n = 1. They
are very useful for being able to compute the derivative of an arbitrary computer code, using
a technique known as automatic differentiation. This finds extensive use in machine learning,
where the derivative of a loss function with respect to the parameters of a neural network is
needed during the training process for implementing the so-called back-propagation algorithm.
It also finds many applications in physics for computing Jacobians or gradients of complicated
integrands. The core idea of auto-differentiation is to take an existing function defined over
real numbers, and change the type of its arguments to dual real numbers, represented with
x̄ = c0 + c1ε. Then the implementation of every elementary operation is defined by the Taylor
expansion of the operation truncated to order O(ε). For instance, the function redefinition:

f(x: Float)=x**2 → f(x: Dual<Float>)=x**2

with x̄2 implemented as c20 + 2c0ε allows one to directly obtain the numerical evaluation of
the derivative f ′(x) by reading the ε coefficient of f(x+ ε). The power of this approach only
becomes apparent when realising that this construction satisfies the composition rule and that
most complicated functions implemented on a computer are composites of elementary ops.

Compute the derivative of the function f(x) = x sin(x) using dual numbers and writing it
as f(x) = g×(x, s(x)) with g×(x, y) = xy and s(x) = sin(x).

Exercise 2.10. Find what is the shape of dual numbers necessary to keep track of up
to the second derivative in a variable x and up to the first derivative in another variable y.
Notice that this more general case of dual numbers is no longer isomorphic to a Grassmann
algebra.
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