
3 Dirac Algebra

3.1 Levi-Civita symbol

Vectors or tensors under Lorentz transformations carry Greek indices µ, ν, τ , . . . . In d = 4
space-time dimensions, the indices take the values 0, 1, 2, 3. The coordinates of a space-time
point are written as xµ with x0 = t (we set c = 1) and ~x =

∑
i x

i~ei. We use Latin indices to
denote the space components xi with i = 1, 2, 3. The four-dimensional metric in Minkowski
space-time is written in the form

gµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 . (1)

Often also the notation ηµν is used in flat Minkowski space-time. The inverse metric gµν is
numerically equal to gµν and satisfies, by definition,

gµνgνρ = δµρ ≡ δµρ , gµνgµν = δµµ = d = 4 .

We employ the Einstein convention and sum over repeated indices. It is good to note that in
general Mµ

ν 6= Mν
µ, however δ is symmetric so the simple notation δµν can be used without

danger of confusion.
The metric gµν is an invariant tensor, i.e. the components in eq. (1) are the same in every

frame. There is a second invariant tensor, the fully antisymmetric Levi-Civita symbol εµνρσ.
We define

ε0123 ≡ 1 , (2)

and all other components follow from antisymmetry.

Exercise 3.1. Show that the contravariant tensor fulfils

ε0123 = −1 . (3)

Raising all four indices using the inverse metric induces a minus sign.

For both physics and formal reasons, it is sometimes interesting to work in space-times
with d 6= 4. In d dimensions, we can define a Levi-Civita symbol with d indices εµ1µ2...µd . This
tensor fulfils the relation

εµ1µ2...µdεν1ν2...νd = (−1)d−1

∣∣∣∣∣∣∣
δµ1ν1 . . . δ

µ1
νd

...
...

δµdν1 . . . δ
µd
νd

∣∣∣∣∣∣∣ . (4)

The symbol | . . . | denotes the determinant of the d× d matrix. Products of ε-tensors can thus
always be eliminated in favor of metric tensors. A related, useful relation reads

εν1ν2...νdA
ν1
µ1A

ν2
µ2 . . . A

νd
µd = det(A) εµ1µ2...µd . (5)
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By choosing a proper Lorentz transformation Λ for the matrix A one immediately sees that ε
is indeed an invariant tensor.

Exercise 3.2. Write out and derive eq. (4) in d = 2 space-time dimensions.

Exercise 3.3. Derive eq. (4) for d space-time dimensions.

Exercise 3.4. Derive eq. (5).

For d = 4, one obtains several useful identities by contracting indices in eq. (4):

εµνρσεµαβγ = −
(
δναδ

ρ
βδ

σ
γ + δνβδ

ρ
γδ
σ
α + δνγδ

ρ
αδ

σ
β − δνβδραδσγ − δναδργδσβ − δνγδ

ρ
βδ

σ
α

)
, (6)

εµνρσεµναβ = −2
(
δραδ

σ
β − δ

ρ
βδ

σ
α

)
, (7)

εµνρσεµνρα = −6 δσα , (8)

εµνρσεµνρσ = −24 . (9)

Exercise 3.5. Derive two of these four relations.

3.2 Dirac Algebra

The Dirac equation is formulated using complex n×n matrices γµ (called the Dirac or simply
the γ-matrices) which fulfil

{γµ, γν} ≡ γµγν + γνγµ = 2 gµν 1 , (10)

where 1 is the n × n identity matrix. The algebra generated by these matrices (i.e. sums of
products of matrices with complex coefficients), defines the Clifford (or Dirac) algebra.

One reason that the Dirac matrices are useful, is that they allow one to easily obtain
representations of the Lorentz group for particles with half-integer spin. Indeed, the matrix

Sµν ≡ i

4
[γµ, γν ] (11)

fulfils the commutation relations of the Lorentz algebra, which read

[Jµν , Jρσ] = i (gνρJµσ − gµρJνσ − gνσJµρ + gµσJνρ) , (12)

where Jµν are the generators of the Lorentz transformations. Due to antisymmetry under
µ↔ ν, there are six generators Jµν , which contain the boosts J0i and the rotations J ij.

Exercise 3.6. Show that Jµν = Sµν fulfils the commutations relations (12). To see this,
verify first that

[Sµν , γρ] = iγµgνρ − iγνgµρ (13)
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and then use the Jacobi identity

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 (14)

with A = Sµν , B = γρ, C = γσ.

The Dirac algebra can be introduced in different space-time dimensions and both for the
Minkowski metric in eq. (1) and for an ordinary Euclidean metric gij = δij. Indeed, for three
Euclidean dimensions, the Pauli matrices generate the Clifford algebra,

{σi, σj} = 2 δij 1 , (15)

with n = 2. For d = 4 space-time dimensions 2× 2 matrices are not sufficient. The reason is
that an arbitrary 2×2 matrix A can be written as a linear combination A = c01+ci σi so that
it is not possible to find a fourth anti-commuting matrix. The lowest-dimensional matrices
which can realize the d = 4 algebra have n = 4.

Exercise 3.7. Find an explicit representation of the algebra for n = 4. Consider matrices
which have blocks of σi, 1 or 0 as 2× 2 submatrices. (Obviously, solutions are in every field-
theory book, but it should be fun to find a representation yourself.)

Exercise 3.8. Show that if γµ is a representation, then also γ̃µ ≡ SγµS−1 is one, for an
arbitrary invertible n× n matrix S.

Also the opposite statement is true (but more difficult to show): any representations γ̃µ and
γµ can be related with a suitable matrix S. The representations are thus equivalent up to a
change of basis in the vector space on which they act. Many computations, in particular all
exercises in the rest of this section, can be performed without relying on an explicit represen-
tation of the γ matrices.

Exercise 3.9. Using only the properties in eq. (10), derive the following expressions:

γµγµ = d1 , (16)

γµγνγµ = −(d− 2) γν , (17)

γµγνγργµ = (d− 2)γνγρ + 2γργν , (18)

γµγνγργσγµ = −2γσγργν + (4− d)γνγργσ . (19)

Simplify eq. (18) for d = 4 dimensions.

In many QFT computations one needs to compute traces of products of γ-matrices. These
can be evaluated using an explicit representation, but it is more elegant to compute them in
a representation-independent way, using eq. (10). Let us first compute the trace of a single
matrix. Consider

(2− d)tr(γν) = tr(γµγνγµ) = tr(γµγµγ
ν) = d tr(γν) . (20)
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It follows that the trace must vanish for d 6= 1. Similarly, one can show that the trace of any
odd number of Dirac matrices vanishes.

Exercise 3.10. Show that tr(γνγργσ) = 0.

Next, consider the trace of two matrices

tr(γµγν) =
1

2
tr(γµγν + γνγµ) = gµν tr(1) . (21)

There is a simple algorithm to compute any trace along these lines. Consider the trace of the
product of m matrices and use the cyclicity of the trace to rewrite

2 tr(γµ1γµ2 . . . γµm) = tr(γµ1γµ2 . . . γµm) + tr(γµmγµ1γµ2 . . . γµm−1) . (22)

In a second step one now uses eq. (10) to anti-commute γµm in the second term back to the
right-most position. One obtains commutator terms containing fewer γ matrices and finally
the term tr(γµ1γµ2 . . . γµm), but with a minus sign since one had to anticommute (m−1) times.
Because of the sign, this term cancels the first term on the right-hand side of eq. (22). The
end result is that the trace of m matrices gets reduced to sum of traces with (m−2) matrices.

Exercise 3.11. Use this algorithm to show that

tr(γµγνγργσ) = (gµνgρσ − gµρgνσ + gµσgνρ) tr(1) , (23)

tr(γµγνγργσγαγβ) = gµνtr(γργσγαγβ)− gµρtr(γνγσγαγβ) + gµσtr(γνγργαγβ)

− gµαtr(γνγργσγβ) + gµβtr(γνγργσγα) . (24)

Let us now consider d = 4 dimensions. The CPT theorem states that every reasonable
QFT must be invariant under a combination of charge conjugation (C), parity (P) and time
reversal (T), but not necessarily under each of these transformations separately. One can show
that in the Weyl basis (solution of Exercise 3.7 where γ0 is not diagonal), these transformations
are represented by ΓP = γ0, ΓT = γ1γ3 and ΓC = iγ2. The product of these matrices is thus
ΓCPT = ΓTΓPΓC = iγ1γ3γ0γ2 = −iγ0γ1γ2γ3. It is therefore useful to identify this particular
combination with the additional matrix γ5,

γ5 ≡ −iγ0γ1γ2γ3 = iγ0γ1γ2γ3 . (25)

Exercise 3.12. Show that this matrix fulfils

{γ5, γµ} = 0 , (γ5)
2 = 1 , γ5 = − i

24
εµνρσγ

µγνγργσ . (26)
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Exercise 3.13. Verify the following trace relations:

tr(γ5) = 0 , (27)

tr(γµγνγ5) = 0 , (28)

tr(γµγνγργσγ5) = −4iεµνρσ . (29)

Exercise 3.14. Because traces of gamma matrices are omnipresent in High Energy Physics,
it is interesting to investigate how they can be evaluated most efficiently.
Consider the following quantity:

T = pν11 gν1,µ1 · · · pνnn gνn,µntr (γµ1 · · · γµn) (30)

involving n arbitrary four-momenta pmuii . Compare the complexity in n of its evaluation in
terms of the number of multiplications for the following two strategies:

• a) By first using the result of Exercise 3.10 in order to evaluate the trace in terms of
only scalar products of the momenta.

• b) By direct numerical evaluation of the trace using explicit matrix multiplication with
the sparse matrix representation found at Exercise 3.7, that is:

T =
∑
i0=0,3

( ∑
m1=0,3

(−1 + 2δ0,m1)p
m1
1 γm1

)
i0i1

· · ·

( ∑
mn=0,3

(−1 + 2δ0,mn)pmn
n γmn

)
i2(n−1)i0


(31)

OPTIONAL: For those of you most intrigued by the above, you implement the two
strategies in an optimized computer code and compare the time needed to evaluate the
trace for a given number of momenta, so as to verify the theoretical complexity analysis
and identify the approximate value n for which one strategy overtakes the other.
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