
4 Force Carriers

The spin-1 fields (vector bosons) are ubiquitous in gauge theories such as the Standard Model.
They are the force carriers, eg. photon in QED, gluons in QCD and W± and Z bosons in the
nuclear weak force. The vector fields can be either massive (W± and Z) or massless (gluons,
photon). The mass origin of a massive vector field is a fundamental question in particle
physics.

4.1 Maxwell equations

The Maxwell equations (in Lorentz-Heaviside units) are

∇ · ~E = ρ , ∇× ~B − ∂t ~E = ~j , (1)

∇ · ~B = 0 , ∇× ~E + ∂t ~B = 0 . (2)

1. Show that the homogeneous equations (2) are automatically satisfied if the fields are
written in terms of the real 4-vector potential Aµ = (φ,Ai), with

~A =
∑
i

Ai~ei, ~B = ∇× ~A, ~E = −∂t ~A−∇φ . (3)

2. Defining the antisymmetric field strength tensor

F µν = ∂µAν − ∂νAµ , (4)

and the real current vector jµ = (ρ,~j), show that

Ei = −F 0i , Bi = −1

2
εijkFjk , (5)

and that the inhomogeneous equations (1) can be compactly written as

∂µF
µν = jν . (6)

3. Using the principle of least action, derive the classical equation of motion (6) for the
field Aµ from the Lagrangian density

L = −1

4
FµνF

µν − jµAµ . (7)

4.2 Massive vector field

Let us add the mass term in the above Lagrangian

L = −1

4
FµνF

µν − jµAµ +
m2

2
AµA

µ , (8)

to describe the propagation of a massive spin-1 field.
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1. Derive the classical equation of motion for the massive spin-1 field, called the Proca
equation.

2. Show that the Proca equation implies the consistency relation

m2∂µA
µ = ∂µj

µ . (9)

For a conserved (Noether) current ∂µj
µ = 0 and non-zero mass m, this imposes the

condition ∂µA
µ = 0. This condition implies that not all four components of the field Aµ

are independent. (The real spin-1 field has three degrees of freedom, two transverse and
one longitudinal polarisation, as we prove later.)

3. Using the above condition, show that the Proca equation simplifies to

(� +m2)Aµ(x) = jµ(x) , (10)

where � = ∂µ∂
µ.

For a free-field theory (jµ = 0) every component of the field satisfies the Klein-Gordon
equation. We can write the solutions as a superposition of plane waves

Aµ(x) =
3∑

λ=0

∫
d3~k

(2π)32ωk

[
εµ(~k, λ)a(~k, λ)e−ik·x + ε∗µ(~k, λ)a∗(~k, λ)eik·x

]
, (11)

where k0 ≡ ωk =

√
m2 + |~k|2.

The four auxiliary polarization vectors εµ(~k, λ) can be chosen such that they form an
orthonormal basis of Minkowski space-time:

ε∗µ(~k, λ)εµ(~k, λ′) = gλλ′ . (12)

In principle, these vectors can be chosen real, but sometimes it is convenient to work with
complex ones (circular polarizations). The first two of the vectors (the transverse polarizations)
are usually chosen to have the form

εµ(~k, 1) = (0,~ε(~k, 1)) , εµ(~k, 2) = (0,~ε(~k, 2)) , (13)

with
k · ε(~k, 1) = k · ε(~k, 2) = 0 , (14)

and
~ε ∗(~k, i) · ~ε(~k, j) = δij . (15)

1. The third space-like polarization vector is chosen to have its three-vector parallel to ~k.
This longitudinal polarization vector has the form

εµ(~k, 3) = (A,B~k) , (16)

where the parameters A and B are chosen such that it is orthogonal to k,

k · ε(~k, 3) = 0 , (17)

and normalised according to equation (12). Determine the coefficients A and B as a
function of k.
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2. The final polarization vector points along the direction of kµ by equation (12), that is

εµ(~k, 0) = Ckµ. Determine the coefficient C.

3. Show that the condition ∂µA
µ = 0 implies vanishing annihilation operator a(~k, 0) = 0

in equation (11). That is, the massive field thus contains three independent solutions
(“polarizations”) for a given momentum.

4. Show that the four polarization vectors fulfil the completeness relation

3∑
λ,λ′=0

gλλ′ε
∗
µ(~k, λ)εν(~k, λ

′) = gµν . (18)

5. Derive from this that the three physical polarization vectors fulfil the completeness
relation

3∑
λ=1

ε∗µ(~k, λ)εν(~k, λ) = −gµν +
kµkν
m2

. (19)

The sum of the physical polarisation can be related to the vector boson Feynman propa-
gator in the unitary gauge,

Dµν
F (x− y) =

∫
d4k

(2π)4
i
(
−gµν + kµkν

m2

)
k2 −m2 + iε

e−ik(x−y) . (20)

Please note the factor of m−2, which makes the limit m→ 0 nontrivial.

4.3 U(1) gauge invariance

For m = 0 and assuming current conservation (∂µj
µ = 0) the Lagrangian in equation (8) is

invariant under gauge transformations

Aµ(x)→ Aµ(x) + ∂µα(x) , (21)

where α(x) an arbitrary differentiable scalar field.

1. Show that these transformations leave Fµν invariant and therefore also the electric and
magnetic fields unchanged.

2. Use integration by parts to show the invariance of the action for a conserved current
∂µj

µ = 0.

3. Show that for any given field Aµ one can always make a gauge transformation such
that the condition ∂µA

µ = 0 is fulfilled. This is called Lorenz gauge (since the imposed
condition is Lorentz invariant).
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4. The condition ∂µA
µ = 0 eliminates one unphysical degree of freedom. However, even

imposing ∂µA
µ = 0 does not fix the gauge freedom completely, show that we can still

perform gauge transformations which fulfil the scalar wave equation

�α(x) = 0 . (22)

Such transformations correspond to another unphysical degree of freedom so we conclude
that the photon field (massless vector boson) only contains two physical degrees of
freedom.

5. The Proca action for a massive spin-1 field is not gauge invariant, but the Stueckelberg
action

L(A, φ) = −1

4
F µνFµν +

m2

2
(∂µφ+ Aµ) (∂µφ+ Aµ)− jµAµ , (23)

which involves an additional real scalar field φ can be invariant under the simultaneous
gauge transformations of Aµ(x) and φ(x). Find the appropriate transformation of φ(x)
given equation (21).

6. Choose the gauge condition for φ(x), such that the Stueckelberg action reduces to the
Proca action.

One can thus view a massive spin-1 field as a combination of a gauge invariant field Aµ,
with two degrees of freedom, and an additional scalar field φ, which provides the third degree of
freedom (the longitudinal polarization). An explicit realization of this is the Higgs mechanism,
where additional scalar fields (the Goldstone bosons) provide a mass term for the gauge fields
of the weak interactions.
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