
5 Lorentz transformations

Proper orthochronous Lorentz symmetry is the basic building block of particle theories. In
the Standard Model of particle physics matter fields are spin-1

2
fermions (quarks and leptons).

The purpose of this class is the study the Lorentz transformation of spinor fields.

5.1 Scalars

To construct a theory for a field φα(x), one first writes down an action. To get relativistic
equations, this action must be Lorentz invariant. To construct such an action for a given field,
it is obviously important to know how the field transforms under Lorentz transformations

x′µ = Λµ
νx

ν . (1)

Lorentz transformations act on a scalar field φ(x) and on a vector field Aµ(x) as follows:

φ′(x) = φ(Λ−1x) ,

A′µ(x) = Λµ
νA

ν(Λ−1x) .
(2)

1. Show that the action is invariant under Lorentz transformations if the Lagrangian trans-
forms as a scalar field in eq. (2).

2. Show that the term

L(x) ⊃ m2

2
Aµ(x)Aµ(x) , (3)

in the Proca Lagrangian transforms as a scalar. Remember that the metric gµν is an
invariant tensor under Lorentz transformations, gµνΛ

µ
ρΛ

ν
σ = gρσ.

3. Show that the Lagrangian of a free massless scalar

L(x) ⊃ 1

2
∂µφ(x)∂µφ(x) , (4)

transforms as a scalar.

The general transformation law for a field φα(x) under Lorentz transformations is

φα(x)→ φα′(x) = Dα
β(Λ)φβ

(
Λ−1x

)
, (5)

where the matrices D(Λ) are a representation of the Lorentz group, i.e.

D(Λ1)D(Λ2) = D(Λ1Λ2) , (6)

and D(1) = 1 is the identity mapping. To find different Lorentz-invariant theories, one should
now classify all possible representations of the Lorentz group.
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5.2 Spinors

In the following, we will construct a representation for spin-1
2

particles. This is the most
fundamental representation since higher spin representations can be obtained from products
of spin-1

2
representations. Rather than analysing full transformations, it is convenient to look

at infinitesimal Lorentz transformations. One writes

Λµ
ν = δµν + Ωµ

ν , (7)

where Ωµ
ν is infinitesimal.

1. (a) Show that Ωµ
ν is an antisymmetric matrix.

A general antisymmetric 4×4 matrix has six independent entries and can therefore
be parameterized as

Ωµ
ν = − i

2
ωαβ(Jαβ)µν , (8)

where the six antisymmetric matrices Jαβ correspond to the six independent Lorentz
transformations (3 rotations and 3 boosts), and the six parameters ωαβ determine
the angles of the rotations and the velocities of the boosts. The matrices Jαβ are
called the generators of the Lorentz transformations and have the form(

Jαβ
)µ
ν

= i
(
gµαδβν − gµβδαν

)
. (9)

(b) Show that they fulfil the Lorentz algebra[
Jαβ, Jρσ

]
= i
(
gβρJασ − gαρJβσ − gβσJαρ + gασJβρ

)
. (10)

These commutation relations encode the Lorentz group in the same way that the
commutation relations [

J i, J j
]

= iεijkJk , (11)

describe the rotation group in 3D. It is convenient to analyse groups using the
algebra of their generators as one can later reconstruct the finite transformations
by exponentiation. A general Lorentz transformation can be written as

Λ = exp

(
− i

2
ωαβJ

αβ

)
. (12)

(c) Consider ω12 = −ω21 = θ and all other components of ωαβ are zero. Show that the
resulting transformation Λµ

ν describes an infinitesimal rotation around the z-axis.

(d) Consider ω01 = −ω10 = β and all other components are zero. Show that the
resulting transformation Λµ

ν describes an infinitesimal boost along the x-axis.

2. Two weeks ago, we studied the Dirac matrices. In particular, six matrices

Sαβ =
i

4

[
γα, γβ

]
(13)
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fulfil the commutation relations (10) of the Lorentz group. To get an explicit form of
these matrices, we need an explicit form of the Dirac matrices. We will use the so-called
chiral (or Weyl) representation. Writing the 4× 4 matrices in 2× 2 blocks, the matrices
have the form

γ0 =

(
0 1

1 0

)
, γi =

(
0 σi

−σi 0

)
, (14)

where σi are the Pauli matrices. Using the matrices in eq. (13), we can now construct
the spinor representation of the Lorentz group. We consider a field ψ with four complex
components, called a Dirac spinor, which transforms as

ψ(x)→ ψ′(x) = D(Λ)ψ
(
Λ−1x

)
, (15)

where

D(Λ) = exp

(
− i

2
ωαβS

αβ

)
. (16)

(a) Consider a general rotation and write the rotation parameters as ωij = −εijkθk.
Show that the transformation takes the form

D(Λ) =

(
exp (iθiσ

i/2) 0

0 exp (iθiσ
i/2)

)
. (17)

(b) Consider a rotation around the z-axis and show that after a rotation with ω12 =
−θ3 = 2π one obtains a remarkable result

ψ′(x) = −ψ(Λ−1x) . (18)

Spinors pick up sign under a 2π rotation (while vectors rotate onto themselves)!

(c) Consider a boost and write the boost parameters as ω0i = βi. Show that in the
chiral representation the boost matrix takes the form

D(Λ) =

(
exp (−βiσi/2) 0

0 exp (βiσ
i/2)

)
. (19)

It is interesting to note that our representation matrices are block-diagonal. This means
that the spinor representation is reducible. One can split the spinor into two-component
spinors

ψ(x) =

(
ψL(x)

ψR(x)

)
, (20)

which transform independently (irreducible representations). The left-handed and right-
handed spinors are called Weyl spinors and can be extracted from a general representa-
tion of the γ matrices using the projection operators

ψL(x) = PLψ(x), ψR(x) = PRψ(x) , (21)
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where PR/L = (1± γ5)/2. In the chiral representation,

γ5 =

(
−1 0

0 +1

)
. (22)

The Weyl spinors are called left- and right-handed, because they have definite helicity
(projection of the spin on the momentum).

5.3 Lorentz invariant Lagrangian for spinors

The boost matrix D(Λ) is not unitary. Because of this, ψ†ψ does not transform as a scalar.
To find a Lorentz-invariant quantity, note that the Dirac matrices in the chiral representation
have the property

γ0γµγ0 = (γµ)†. (23)

1. Show that this implies (
Sαβ

)†
= γ0Sαβγ0 . (24)

2. After defining the adjoint spinor ψ̄ = ψ†γ0, show that it transforms as

ψ̄(x)→ ψ̄′(x) = ψ̄
(
Λ−1x

)
D(Λ)−1 . (25)

It is easiest to show this using an infinitesimal transformation. This implies that the
product ψ̄(x)ψ(x) transforms as a Lorentz scalar.

3. Show that ψ̄(x)γ5ψ(x) is a pseudoscalar, i.e. invariant under proper Lorentz transfor-
mations but odd under parity transformation defined as ψ → γ0ψ. For the Lorentz part,
you may again make use the infinitesimal transformations.

4. Show that
D(Λ)−1γµD(Λ) = Λµ

νγ
ν . (26)

5. Show that the above relation immediately implies that ψ̄(x)γµψ(x) transforms as a
Lorentz vector and ψ̄(x)γµγνψ(x) as a tensor.

6. Finally show that
L(x) = ψ̄(x)iγµ∂µψ(x)−mψ̄(x)ψ(x) , (27)

transforms as a scalar.
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