
7 Free particle propagator

In the first exercise of this class, we had studied Gaussian intergrals and derived the structure
of Wick’s theorem for N -point correlators and introduced the notion of a generating functional.
The generalisation to a quantum scalar field theory yields:

〈T {φ(x1)φ(x2)...φ(xN)}〉 ≡
∫
Dφ eiS[φ]T {φ(x1)φ(x2)...φ(xN)}∫

Dφ eiS[φ]
, (1)

where S[φ] =
∫
d4x L(x) and the time-ordering operator T orders the fields from left to right

in descending order of the time component of the position at which they are evaluated. The
generating functional of the correlation functions is given by

Z[J ] =

∫
Dφ eiS[φ]+i

∫
d4x J(x)φ(x) , (2)

where J(x) is called an external source.
The traditional derivatives ∂bij we had used in the first exercise are now replaced by

functional derivatives, defined as δ
δJ(x)

J(y) = δ4(x− y), resulting in an analoguous expression
for the correlator of N scalar quantum fields:

〈φ(x1)φ(x2)...φ(xN)〉 = (−i)N 1

Z[0]

δ

δJ(x1)

δ

δJ(x2)
...

δ

δJ(xN)
Z[J ]

∣∣∣∣
J=0

. (3)

We will now consider the free theory of a real scalar field φ(x) with the Lagrangian:

L(x) = −1

2
φ(x)(� +m2)φ(x) , (4)

where m is a real parameter and � = ∂µ∂
µ. Before computing the free scalar propagator given

by 〈φ(x1)φ(x2)〉, let us study the generating functional Z[J ] in more details.

1. Show that the path integral in eq. (2) converges when considering the small deformation
to the mass m2 → m2− iε. Note the importance of the sign of this complex deformation.

2. Let iDF (x− y) be the inverse of the operator (� +m2 − iε), that is

(� +m2 − iε) iDF (x− y) = δ4(x− y) . (5)

In the first class, we had established the following result for Gaussian integrals:

N
∫

dnx exp

(
−1

2
xTMx+ aTx

)
=

√
(2π)n

detM
exp

(
1

2
aTM−1a

)
. (6)

In complete analogy with the derivation of the above result, show that

Z[J ] = Z[0]e−
1
2

∫
d4x d4y J(x)DF (x−y)J(y) . (7)

Hint: Consider ”completing the square” using the following field shift by a constant
factor :

φ(x)→ ψ(x) = φ(x)−
∫

dy iDF (x− y)J(y) (8)
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3. We are finally ready to use eq. (3) to compute the Feynman propagator of this real scalar
field. Show that it is given by:

〈T {φ(x1)φ(x2)}〉 = DF (x1 − x2) . (9)

4. The propagator is rather straight-forward to obtain in momentum space, where the
derivative operators in DF become momenta, and thus DF = k2 −m2 + iε. It is how-
ever possible to obtain an expression for DF (x1 − x2) by applying the inverse Fourrier
transform to the propagator expression in momentum space:

DF (x− y) =

∫
d4k

(2π)4
i

k2 −m2 + iε
e−ik·(x−y) . (10)

By explicitly integrating the energy component of the momentum integral using Cauchy’s
theorem, show that

DF (x− y) = Θ(x0 − y0)∆(x, y) + Θ(y0 − x0)∆(y, x) , (11)

with ∆(x, y) defined as

∆(x, y) =

∫
d3~k

(2π)3
1

2ω~k
e+iω~k(x

0−y0)−i~k·(~x−~y) , (12)

with ω~k the dispersion relation ω~k =
√
~k2 +m2. Notice the crucial role that the sign

of the +iε prescription plays in this construction and therefore its importance for the
causal structure of the theory.

8 Feynman rules

Information on a quantum field theory can be extracted from the correlation functions of the
fields. As shown by time-dependent perturbation theory in Quantum Mechanics (cf. discussion
of the interaction / Dirac picture), of particular interest are time-ordered correlation functions

〈Ω |T {φ (x1) . . . φ (xn)}|Ω〉 . (13)

From the two-point function, one can obtain information about the spectrum of the theory,
whereas the higher-point functions yield the scattering amplitudes. Interacting theories are in
general too complicated to allow for an exact computation of these correlation functions, but
we can simplify the problem by treating the interaction as a perturbation. For φ4-theory, for
example, we write the Lagrangian as

L = L0 + Lint =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

4!
φ4 , (14)

and expand all observables as a power series in the coupling constant λ.
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The prescription to compute correlation functions in perturbation theory is quite simple.
One computes

〈Ω |T {φ (x1) . . . φ (xn)}|Ω〉 =
1

Z

〈
0

∣∣∣∣T {φ (x1) . . . φ (xn) exp

[
i

∫
d4zLint (z)

]}∣∣∣∣ 0〉 , (15)

where the correlation function on the right-hand side is computed in the free theory. The
normalization factor

Z =

〈
0

∣∣∣∣T {exp

[
i

∫
d4zLint (z)

]}∣∣∣∣ 0〉 , (16)

arises because the vacuum of the free theory is not the same as the vacuum of the interacting
theory. For perturbation theory, the factor

exp

[
i

∫
d4zLint (z)

]
= 1 + i

∫
d4zLint (z)− 1

2

∫
d4z′

∫
d4zLint (z)Lint (z′) + . . . , (17)

is expanded and the higher-order terms are suppressed by higher powers of the coupling
constant. The interaction terms in the theory are polynomials in the fields and so the entire
computation reduces to the evaluation of correlation functions in the free theory,

〈0 |T {φ (x1) . . . φ (xn)}| 0〉 , (18)

where some of the fields arise from the above expansion. Note that this is an equivalent
formulation of the path integral formalism used in the previous section.

8.1 Feynman rules for φ4

An important result for the evaluation of correlation functions in the free theory is Wick’s
theorem. It states that

〈0 |T {φ (x1) . . . φ (xn)}| 0〉 =
∑

pairings

GF (xi1 − xi2)GF (xi2 − xi3) . . . GF

(
xin−1 − xin

)
, (19)

where the Feynman propagator GF , is the two-point Green’s function that we have shown to
be equal to the propagator DF we obtained in eq. (10).

1. Compute the four-point correlation function

〈Ω |T {φ (x1)φ (x2)φ (x3)φ (x4)}|Ω〉 , (20)

at first order in λ in φ4-theory. The number of contractions is quite large, but many
of them are equivalent because the fields in the interaction Lagrangian live at the same
point. It is sufficient to write down the expression, you do not need to perform the inte-
gration over the position of the interaction vertex. Represent the contractions graphically
by drawing the propagator as a line from x to y.

2. Draw the diagrams for both the numerator in eq. (15) and also the normalization factor
Z in eq. (16). Which contributions cancel against the normalisation factor?
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3. Compute the Fourier transform of the fully-connected part of the correlator (20). The
fully-connected piece is the most relevant, since it contains the scattering amplitude.
(Fully-connected: All external lines are connected to each other and there are no vacuum
bubbles.)

4. As a shortcut to Wick’s theorem, the results for the correlation functions can be obtained
using the so-called Feynman rules. For the case of φ4-theory, the momentum-space
rules for the connected part of the n-point correlation function at mth order in λ are
derived in e.g. Peskin - Chapter 4. One first draws all possible fully-connected diagrams
with n external legs and m interaction vertices. Then convert each diagram into the
mathematical expression using the Feynman rules.

Identify what are the Feynman rules for φ4 theory in the previous computation of (20).
More specifically, explains what mathematical expression needs to be inserted for each
vertex and propagator, both in position space and momentum space.

8.2 Feynman rules for QED

The QED Lagrangian can be written as

LQED = −1

4
FµνF

µν + ψ̄(i/D −m)ψ , (21)

with the covariant derivative defined as Dµ = ∂µ + ieAµ.
The Feynman rules for QED are similar to the scalar case. Wick’s theorem applies also for

vector and fermion fields (except that one has to be careful about signs with anti-commuting
fermion fields), but we now need expressions for the fermion and photon propagators. In the
so-called Feynman gauge the photon propagator reads

Gµν
F (x− y) = 〈0 |T [Aµ(x)Aν(y)]| 0〉 =

∫
d4k

(2π)4
i

k2 + iε
(−gµν) e−ik·(x−y) . (22)

The numerator −gµν arises from the sum over polarizations and includes unphysical degrees
of freedom, but one can show that the unphysical polarizations do not contribute to physical
quantities. The photon propagator is not unique but depends on the gauge choice; furthermore,
so-called Faddeev-Popov ghosts need to be introduced in general.

The fermion propagator reads

SFαβ(x− y) =
〈
0
∣∣T [ψα(x)ψ̄β(y)

]∣∣ 0〉 =

∫
d4k

(2π)4
i
(
kµγ

µ
αβ +mδαβ

)
k2 −m2 + iε

e−ik·(x−y) . (23)

Typically, the abbreviation k/ ≡ kµγ
µ is used for the numerator and often one does not explicitly

write out the Dirac indices α and β. Armed with these expressions and Wick’s theorem, we
can now evaluate correlation functions in QED.

1. Compute the three-point function〈
Ω
∣∣T {ψα (x1)Aµ (x2) ψ̄β (x3)

}∣∣Ω〉 . (24)
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Represent the result graphically, using a line with an arrow to represent the fermion
propagator and a wiggly line for the photon. Read off the Feynman rule for the QED
vertex.

2. The QED Feynman rules in momentum space have the same structure as the ones in the
scalar case, but the propagators and vertices now carry Dirac indices α, β and Lorentz
indices µ, ν. Think of suitable correlation functions which can allow you to derive QED
Feynman rules (in momentum space) using Wick’s theorem:

(a) What is the propagator Feynman rule for a photon and a fermion in the momentum
space?

(b) What is the QED vertex Feynman rule in the momentum space?

(c) Show that at each vertex one imposes momentum conservation.

(d) What is the Feynman rule for the closed loop? What one does with the undeter-
mined loop momenta?

(e) Show that each closed fermion loop includes a factor (−1).

5


