9 Reduction formula and S-matrix

Scattering amplitudes are needed to compute cross sections measured in particle physics experiments.
We have already discussed time-ordered vacuum correlation functions in perturbation theory. The
scattering amplitudes can be extracted from these using the Lehmann-Symanzik-Zimmermann (LSZ)
reduction, but a thorough derivation of this relation is beyond the scope of these exercises and also
difficult to find in the literature general.

Let us briefly sketch how the reduction formula is obtained by considering the four-point correlation
function. To extract the contribution of an outgoing particle generated with field ¢(z1) one considers
the Fourier transform with respect to x1,

F(p1,$2,:c3,fc4)=/d4x1 e THQIT {¢ (1) ¢ (2) ¢ (3) ¢ (24)}] Q) - (1)

One can show (and this is the subtle part) that if there is a single particle state with mass m, then
for p(f > 0 the function F' develops a pole at p% = m?, which describes the propagation of an outgoing
particle at very large times,

F(p1, wg, w3, 14) = p%_img (Q[p(0)[p1; 0ut) (pr; out [T {¢ (x2) ¢ (w3) ¢ (xa)}[ W) + ... . (2)

The dots represent contributions from other states, which do not give rise to a pole. Now, the Feynman
diagrams in momentum space do involve poles coming from the external propagators. The expectation
value

(Qlp(0)|p1) =VZ =1+0(N) , (3)

is called the on-shell wave-function renormalization constant. It can be computed from the two-point
function (see KL spectral representation).
We can repeat the procedure for the other three fields to get

/d4x1 P11 /d4x2 eip2z2/d4$3 e_iqu3/d4x4 e taB4 QT {p(x1) P (x2) P (x3) P (x4)}| Q) = (4)

= (P, P2; out|qa, ¢B;in) '
P?—m%%—mzqi—m?q%—m?

()

To get the 2 — 2 scattering amplitude one thus computes the Fourier transform of the four- point func-
tion and divides by the external propagators. A Green’s function from which the external propagators
have been removed is called an amputated Green’s function. The quantity

Sti = (1, P2; out|qa, ¢B;in) (6)

is called the S-matrix. The non-trivial part of the S-matrix, in which the incoming particles interact,
arises from the fully-connected diagrams (all external lines are connected to each other) and is called
the scattering matrix M. It is defined as

(271')4(5(4) (qA +qp —p1 — pQ)iM(QA7 qB — p17p2) = <ﬁ17ﬁ2; OUt"jAa (jB; in) ‘connected . (7>

In practical terms, the computation of M is quite simple. One uses the momentum-space Feynman
rules for the connected Green’s functions, removes the external propagators and multiplies by the



appropriate Z-factor (at lowest order Z = 1), and by (—i). For ¢*-theory one obtains for the 2 — 2
amplitude at the lowest order
M=-X\. (8)

For external fermions and photons, the reduction formula has the same structure, but one needs
the matrix elements

(Qal0) e (7, 5)) = Z2ualp.s)
([ (0)] ¥ (7. 5)) = Z20a(F.5) . (9)

(A0 77 N) = Zheu(F. ) |

and their complex conjugates. Here u, v are Dirac spinors, and ¢, is a polarization vector.
You can use the plane wave solutions for both fermion and vector fields from previous exercises

d*k . . —ikx . n ikx
th(x) = SZZ:‘:/@W)%C [bs(k)ua(k7 S)e k -+ dl(k)va(k, S)e k :| , (10)
and . o ) ) | ) ) |
Au(w) = Z/M {a(k,)\)gu(k,)\)e”kx +a*(k, A)g;(k,x)ezkﬂ . (11)
A=0

The canonical quantization (anti-)commutation relations for the fermionic and vector creation and
annihilation operators (with the above convention for the fields) are

{bs(E), b, (p)} — (27)220k0 (K — §)3sy |

b ) (12)
|k X),a! (5, 3)| = (2720 (K = P)oa

and all the other (anti-)commutation relations are equal to zero.

1. Verify the matrix elements in eq. (9) by using the expressions for the free field operators for
spinor and vector fields. They are obtained by replacing the Fourier expansion coefficients by
creation and annihilation operators (e.g. bl(E) 2) = |e~ (K, 5))). Subsequently one uses canonical
commutation relations. The Z-factors for free fields are equal to 1.

One can formulate the above prescription as Feynman rules directly for M. Suppressing the Z-
factors, which for our leading-order computations are equal to 1, one first computes the amputated
amplitude using the Feynman rules given last time. Then, for the external lines one multiplies with
u(p, s), v(p, s) and €(p, ) for incoming and u(p, s), v(p, s) and €*(7, A) outgoing particles.
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ete” — utp” in QED

Let us compute our first real-life scattering.

1.

Show that the scattering amplitude M for the process e (qa,s4)e (¢, s8) — p~ (p1,71) ™ (p2, r2)
reads ol . o .
M(e+6_~>u+y_) — M = et (QBa SB) Yu (QAa SA) u (p17 Tl) YV (P27 TZ) '
(¢4 +aB)”
Only a single diagram contributes to this process, and the Feynman rules for the muon are
exactly the same as for the electron.

(13)

. Compute the unpolarized amplitude squared, which is obtained by summing over the final state

spins r1, 79 and averaging over the initial spins s4, sp:
1 5 1 t
1 > M[* = > MM, (14)
SA,SB,T1,T2 SA,SB,T1,T2

For the conjugate Dirac structure recall the relations about v matrices. Also, the sum over spins
can be simplified using the completeness relations.

. Show that the result reads

(qap2 gBP1 + A1 4BD2) - (15)

1 Imp=

SA,SB,T1,T2

(ga +gB)*

We are neglecting the mass in this exercise.

. The so-called Mandelstam variables are defined as s = (g4 +¢g)?%, t = (g4 —p1)?, u = (ga —p2)?,

where ¢4, gp are in-coming four-momenta, p;, p2 are out-going four-momenta, and g4 + gp =
p1 + p2 because of energy-momentum conservation. Show that the Mandelstam variables obey

s+t+u=qi+qp+pi+p;. (16)

. Show that in terms of Mandelstam variables, the result in eq. (12) can be written as

1 t2 + u?
1 > |M|2:264T. (17)

SA,SB,T1,T2

. It is interesting to consider the slightly more complicated process of ete™ — eTe™ in QED,

which receives contributions from two diagrams. Upon squaring the amplitude, including the
interference term, show that in this case the matrix element reads:

1 ete— 4 - (52+8t—}—t2)2
1 > MR :464T . (18)

SA;5B,T1,T2

Verify that both results above satisfy the symmetry expected from interchanging appropriate
combinations of initial- and final-state momenta (i.e. crossing symmetry).

Such computations are key components of many High-Energy Physics results, and it is both error-
prone and tedious to do them by hand. We will discuss their automation in future exercises, but
for now I encourage you to visit https://feyncalc.github.io/examples| showcasing the use
of FeynCalc, a Mathematica package for symbolic computations in High-Energy Physics.


https://feyncalc.github.io/examples
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