
10 Cross-sections and decay rate

The previous exercises focused on the computation of the scattering matrix M . We will now see how
to use M to compute the probability P that two particles A and B scatter into a given set of final-state
particles. This probability depends on both the particles and their interactions as well as the density
of the incoming particles and their relative velocity. The cross-section σ is thus defined by dividing
out these factors:

dP

dt d3~x
= |~vA − ~vB|ρA(x)ρB(x)σ , (1)

where it is usually assumed that the incoming particles both fly along the z-axis and vi = pzi /Ei. Such
cross-sections are essential in High-Energy Physics experiments as they constitutes the final theoretical
predictions that can be compared against the data gathered in the detectors. These cross-sections
indirectly encode all information about the fundamental interactions and properties of the underlying
Lagrangian which can thus be extracted from the data. The 2→ n cross section is given by

dσ =
1

F

n∏
i=1

d3~pi
(2π)32Ei

|M (qA, qB → {pf})|2 (2π)4δ(4)

(
qA + qB −

n∑
i=1

pi

)
, (2)

where F is called the flux factor.

1. If we place ourselves in the rest frame of particle B, we can replace F = 2EA2EB|~vA − ~vB| by
the unambiguous F = 4EAmB|~vA|. Show that this can be expressed in a Lorentz-invariant form

as F = 4
√

(qA · qB)2 −m2
Am

2
B.

To obtain eq. (2), one computes the probability P for scattering normalized Gaussian wave packets
of the form

|φ(~p, L)〉 ≡
∫

d3~k

(2π)3
1√
2Ek

φ(~k, ~p, L)|ψ(~k)〉 (3)

with
φ(~k, ~p, L) = N e−(~p−~k)2L2

(4)

and |~p| � L−1. The normalisation factor is chosen such that 〈φ(~p, L)|φ(~p, L)〉 = 1. The particle
density ρ(x) = |φ(x)|2 is obtained from the Fourier transform.

φ(x) =

∫
d3~k

(2π)3
φ(~k, ~p, L)e−ik·x. (5)

For the derivation one uses the fact that the wave packets are sharply peaked at ~k ≈ ~p, so that
one can replace the momenta ~k in the amplitudes by ~p, the typical momentum of the wave packet,
up to corrections of order |~p| � 1/L. In practical computations, cross-sections are oten computed
considering convolutions of the partonic cross-section with particular beam profiles accounting for the
energy spread of the colliding particles.

Apart from cross-sections, we are also interested in decay rates. In the limit where the decay width
Γ is much smaller than the particle mass M , and we are in the rest frame of the decaying particle, its
decay into a particular final state can be computed as

dΓ =
1

2M

n∏
i=1

d3~pi
(2π)32Ei

|M (q → {pf})|2 (2π)4δ(4)

(
q −

n∑
i=1

pi

)
. (6)

The total decay rate Γtot of an unstable particle is the sum of the rates into all possible decay channels
and the lifetime is τ = 1/Γtot.
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11 Phase space integrals

Both the scattering amplitude and the particle decay require that one evaluates phase-space integrals,
i.e. integrals of the form

dΦn (q → {pf}) =
n∏
i=1

d3~pi
(2π)32Ei

(2π)4δ(4)

(
q −

n∑
i=1

pi

)
. (7)

To compute these, one eliminates some integrals using momentum conservation. The remaining ones
are parameterized in terms of suitable variables, for example energies and angles.

1. Show that after integrating over selected variables in order to remove δ-functions, the two-body
phase space takes the form

dΦ2 (q → p1, p2)→
dcos θdφ

(2π)2
|~p1|
4
√
s
, s = q2 . (8)

The phase-space is Lorentz invariant, but the angles and the three momentum refer to the rest
frame of the decaying particle. The angles θ and φ are relative to some fixed axis in the rest frame
of q. For a 2 → 2 scattering process q = qA + qB and the rest frame of q is the center-of-mass
frame and θ is chosen as the angle between ~qA and ~p1.

2. Show that the three momentum is given by

|~p1| = |~p2| =
1

2
√
s

√
λ
(
s, p21, p

2
2

)
, (9)

where λ(a, b, c) = (a− b− c)2 − 4bc. For the scattering e+e− → µ+µ−, we have p21 = p22 = m2
µ,

but derive the formula for the general case of unequal masses.

3. Using this result, show that the 2→ 2 scattering cross section (2), evaluated in the center-of-mass
frame, simplifies to

dσ

dΩc.m.
=

1

F

|~p1|
16π2Ec.m.

|M (qA, qB → p1, p2)|2 , (10)

where Ωc.m. is the solid angle of particle 1 and Ec.m. = EA + EB in this frame. Since the
cross section does not depend on the azimuthal angle, we can write dΩc.m. = 2π sin θc.m. dθc.m. ,
where θc.m. is the scattering angle in the center of mass frame.

4. Compute the total cross section for 2→ 2 scattering in φ4 theory in the center-of-mass frame at
a given center-of-mass energy.

5. Finally, evaluate the cross section for e+e− → µ+µ− following from

1

4

∑
sA,sB ,r1,r2

|M |2 = 2e4
t2 + u2

s2
, (11)

derived last time. Work in the center-of-mass frame in the high-energy limit, where one can
neglect the electron and muon masses. We choose to parameterize the momenta as

qA = E(1, 0, 0, 1), qB = E(1, 0, 0,−1)
p1 = E(1, sin θ, 0, cos θ), p2 = E(1,− sin θ, 0,− cos θ)

. (12)
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(a) Show that the differential muon production cross section is

dσ

dΩ
=
α2
em

4s

(
1 + cos2 θ

)
, αem ≡

e2

4π
, (13)

and sketch the physical meaning of this result.

(b) Show that the total cross section reads

σ =
4πα2

em

3s
. (14)

6. Identify what prevents one from computing the similar inclusive cross-section for the Bhabha
scattering process e+e− → e+e−, whose matrix element you also computed last time. Explain
how realistic fiducial volume cuts relevant for actual collider experiments alleviate this problem.
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