
11 Loop calculations: analytic approach

Consider a theory of one real scalar field φ and two chiral fermions ψL and ψR with a U(1) gauge sym-
metry with the coupling strength e and a global Z2 symmetry. Field charges under these symmetries
are listed in the table below.

Table 1: Field charge assignment.
U(1) Z2

φ 0 -1
ψL Q +1
ψR Q -1

1. Write down the most general Lagrangian up to dimension 4. Canonically normalize the kinetic
terms and keep the coefficients of the remaining operators general.

2. What fields are allowed to have mass and what fields do not. Why not?

You should arrive at the following Lagrangian (we will adopt the following coefficients for the
rest of the problem sheet)

L = −1

4
FµνF

µν +
1

2
∂µφ∂

µφ+
µ2

2
φ2 − λ

4
φ4

+ ψ̄L i /DψL + ψ̄R i /DψR − yφψ̄LψR − yφψ̄RψL .
(1)

Consider all the parameters µ, λ and y to be real.

3. Find the minimum v of the scalar potential (µ2 > 0 since µ ∈ R).

4. The scalar field spontaneously breaks the symmetry by acquiring VEV. Consider the positive
value of VEV and expand the scalar field around its minimum φ = v+S. Rewrite the Lagrangian
in terms of the new scalar field S instead of φ. You can drop the constant term.

5. What fields acquire a mass after the spontaneous symmetry breaking? Express their masses in
terms of the parameters µ, y and v.

6. Rewrite the Lagrangian once more with all the parameters written in terms of the particle masses
and v.

The resulting Lagrangian should look as follows

L = −1

4
FµνF

µν +
1

2
∂µS∂

µS −
m2
S

2
S2 −

m2
S

2v
S3 −

m2
S

8v2
S4

+ ψ̄ i /Dψ −mψψ̄ψ −
mψ

v
Sψ̄ψ ,

(2)

where ψ =

(
ψL
ψR

)
such that ψL = PLψ and ψR = PRψ with PL/R = 1

2(1∓ γ5).

7. What are the momentum space Feynman rules for the propagators of the theory?

8. What are the momentum space Feynman rules for the vertices of the theory?
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9. Assume the mass hierarchy mγ < mS < mψ. Reason that the dominant decay channel for the
scalar field is S → 2γ. Draw all the Feynman diagrams for this process. (Note: γ is the U(1)
gauge boson.)

10. Calculate the scattering amplitude for the scalar decay Mλ,λ′(S → 2γ), where λ and λ′ label
polarizations of the outgoing photons. You should find

Mλ,λ′ =
e2Q2

2π2v
ε∗µ(p, λ)ε∗ν(q, λ′)

[
pνqµ − gµν

m2
S

2

]
I

(
m2
S

m2
ψ

)
, (3)

where

I(a) =

∫ 1

0
dx

∫ 1−x

0
dy

1− 4xy

1− axy
. (4)

11. Calculate the scattering amplitude squared and sum over final state polarizations
∑

λ,λ′

∣∣Mλ,λ′
∣∣2.

12. Calculate the scalar partial decay width Γ(S → 2γ). You should find the result

Γ(S → 2γ) =
e4Q4m3

S

28π5v2
|I(a)|2 (5)

13. Find the explicit expression for I(a) (using Mathematica or other software is allowed). What is
the behaviour of this function in the limit mψ →∞? What is the physical interpretation of this
limit when applied to Γ(S → 2γ)?
Hint: it is important to carefully specify how the limit mψ → ∞ can be taken in terms of the
free parameters of the unbroken lagrangian.

14. Consider now the case where 2mψ < mS . What is expected to be the dominant channel for the
scalar field S in this case? Compute this signficantly simpler tree-level decay rate.

15. The decay rate Γ(S → 2γ) still contributes in this regime, but its computation requires addi-
tional care. Explain what is the problem in the naive computation of the integral of eq. (4) and
the resulting ambiguity in the evaluation of the analytic expression you found for I(a), which is
now a multi-valued function. How can each of these two expressions be properly regularized?
Hint: Consider how Feynman’s causal prescription +iε of the denominator of the loop propaga-
tors can be thought of as the spinor mass acquiring an infintesimal imaginary part.
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You may find the following identities useful.

Feynman parameters:
1

ABC
=

∫ 1

0
dxdydz

2δ(x+ y + z − 1)

(xA+ yB + yC)3
(6)

Trace of gamma matrices:

Tr[odd # of γ] = 0 (7)

Tr[γµγν ] = 4gµν (8)

Tr[γµγνγργσ] = 4[gµνgρσ − gµρgνσ + gµσgνρ] (9)

Photon transversality:
εµ(p)pµ = 0 (10)

Loop integrals: ∫
ddl

(2π)d
lµlν =

gµν

d

∫
ddl

(2π)d
l2 (11)∫

ddl

(2π)d
1

[l2 −∆]2
=

i

(4π)d/2
1

∆2−d/2Γ

(
4− d

2

)
(12)∫

ddl

(2π)d
l2

[l2 −∆]2
= −d

2

i

(4π)d/2
1

∆1−d/2Γ

(
2− d

2

)
(13)∫

ddl

(2π)d
1

[l2 −∆]3
=

−i
2(4π)d/2

1

∆3−d/2Γ

(
6− d

2

)
(14)∫

ddl

(2π)d
l2

[l2 −∆]3
=
d

4

i

(4π)d/2
1

∆2−d/2Γ

(
4− d

2

)
(15)

Differential decay rate and cross section:

dΓ =
1

2M
|M|2 dΦ2 , (16)

σ =
1

S

∫
dσ , (17)

where S = 1 for decay into two distinct particles while S = 2 for decay into two identical particles
and dφ2 is the two-body phase space we evaluated last week.
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