
12 Loop calculations: numerical approach

The computation of Feynman loop diagrams has a long history in High-Energy physics. The analytical
treatment of the triangle loop integral of the previous exercise offered a glimpse at some aspects this
technology, such as the Feynman parameterisation, d-dimensional regularisation and tensor reduction.
The current state-of-the-art in loop calculations is full automation at one loop, and dedicated methods
beyond one-loop that smartly combine analytical and numerical techniques.

In this exercise, you will explore a completely different and fully numerical alternative for the com-
putation of the same triangle integral. You will implement the numerical solution in a Python+Rust

computer code, starting from a template implementation provided to guide your work.
For the toy model of the previous exercise, we had found that the scalar decay width Γ stemming

from the process S → γγ reads:

Γ(S → γγ) =
1

16π

1

mS

∑
λ,λ′

∣∣Mλ,λ′
∣∣2 , (1)

thanks to the fact that the 1→ 2 phase-space integral can be performed analytically, and it factorises
entirely the squared matrix element Mλ,λ′ . Now, assigning the four-momentum k to the edge of the
triangle between the two photons, each carrying incoming momentum q and p respectively, we found
that that the helicity amplitude Mλ,λ′ could be written:

Mλ,λ′(q, p) = ie2Q2mψ

v
εµ(p, λ)εν(q, λ′)Iµν(q, p) (2)

Iµν(q, p) =

∫
d4k

(2π)4

Nµν(k, q, p)

(k2 −m2
ψ + iε)((k − q)2 −m2

ψ + iε)((k + p)2 −m2
ψ + iε)

(3)

Nµν(k, q, p) = Tr
[
(/k +mψ)γµ(/k + /p+mψ)(/k − /q +mψ)γν

]
+ (p↔ q & µ↔ ν)

= 8mψ[4kµkν − gµνk2 − pµqν + pνqµ − gµν
m2
S

2
+ gµνm2

ψ]. (4)

This is the point at which we had introduced the Feynman parameterisation, and proceeded with
tensor reduction of the numerator and application of d-dimensional integral identities.

12.1 Theory part

We will now take a different route, and compute the integral Iµν(q, p) numerically directly in momen-
tum space. To this end, a first concern may be the kµkν and k2 terms in the numerator.

1.1a Let us define Tµν the tensor integral corresponding to the integral of Eq. (3) with Nµν = kµkν .
Argue that Lorentz invariance allows one to derive the following decomposition (with unspecified
coefficients αi):

Tµν = α1 g
µν + α2 p

µqν + α3 q
µpν + α4 p

µpν + α5 q
µqν . (5)

1.1b [OPTIONAL] In a previous exercise, we had derived the spin-sum relation for a massive vector.
In the case of a massless vector, one can show that the spin-sum rule can be written as:∑

λ,λ′∈{−1,1}

εµλ(p)ενλ′(p) = −gµν +
nµpν + pµnν

p · n
− pµpν

(p · n)2
, (6)

1

for an arbitrary time-like normalized vector satisfying nµnµ = 1, identifying the axial gauge
choice for the photon polarisation vectors, with the property of εµnµ = 0. Note that the four-
vector n can in principle be chosen independently for each photon, and a smart choice can help
simplify the computation. In particular, choosing n = (1, 0, 0, 0) and defining p̄µ ≡ 2(p·n)nµ−pµ
(meaning p̄µ = (p0,−~p), with pµ = (p0, ~p)), show that one obtains:∑

λ,λ′∈{−1,1}

εµλ(p)ενλ′(p) = −gµν +
pµp̄ν + p̄µpν

p · p̄
. (7)

Assuming the above, show that in the rest frame of the decaying scalar S (where the two photons
are back-to-back, so that q = p̄), terms of Iµν proportional to pµqν , qµpν , pµpν and qµqν do not
contribute to the unpolarized decay rate of Eq. (1).
Hint: For physical on-shell photons, remember the orthogonality condition ελ(p) · p = 0. Then,
also use the axial gauge property ελ(p) · n = 0 in the expansion of ελ(p) · q with q = p̄.

1.1c Argue that the first two numerator terms 4kµkν and gµνk2 would locally induce an Ultra-Violet
(UV) divergence when the norm of the 4-momentun kµ approaches infinity during the numerical
integration of Eq. (3). However, thanks to the result from Ex. 1.1b, we now know that we can
choose to perform our computation in a particular gauge in which we can ignore numerator
terms proportional to pµqν and qµpν and simply write Tµν = αgµν .

Show then that α = 1
4g
µνTµν , so that we can rewrite the original integral Iµν(q, p) of Eq. (3)

with Nµν = gµν(m2
ψ − m2

S/2). This much simpler numerator is now independent of the loop
momentum kµ and free of UV divergences. However, remember that this modified numerator
will only yield the same result as the original one when working in the rest frame of S and for
our particular axial gauge choice.

Thanks to the above realisation, we find that the tensor numerator is now independent of the loop
momentum and can be taken outside the loop integral (this does not happen in general of course,
but it thankfully simplifies our life here). Provided that we work in the rest frame of the decaying
particle S and that the polarization vectors εµ are expressed in the axial gauge with n = (1, 0, 0, 0),
the helicity amplitude of Eq. (2) can be rewritten as:

Mλ,λ′(q, p) = 8e2Q2
m2
ψ

v
εµ(p, λ)εν(q, λ′)gµν(m2

S/2−m2
ψ)I(q, p) (8)

I(q, p,mψ) =

∫
d4k

−i
(2π)4

1

(k2 −m2
ψ + iε)((k − q)2 −m2

ψ + iε)((k + p)2 −m2
ψ + iε)

. (9)

1.2 Compute analytically the scalar integral I(q, p,mψ), for mS < 2mψ, using a derivation very close
to what you did in the previous exercise. You should find:

I(q, p) ≡ I(2q · p = m2
S ,mψ) =

1

8π2

1

m2
S

arcsin2

[
mS

2mψ

]
. (10)

Which symmetry guarantees that the result only depends on the internal propagator mass and
the quantity q · p? Quickly check the dimensional consistency of this result as well.

1.3 Characterize the location in ~k of all singularities in the four-dimensional expression of Eq. (6).
Sketch what they look like on a two-dimensional plane (k0, kx).

2

1.4 Derive the Loop-Tree Duality (LTD) expression for the triangle integral of Eq. (6). It is obtained
by analytically performing the integral in dk0 using Cauchy theorem and a contour integral closed
using a semi-circle with infinite radius in the lower-half complex plane. Explain why the integral
along this semi-circle is zero, and you should find:

I(q, p,mψ) =

∫
d4k

1

(2π)3

[
δ+(k2 −m2

ψ) + δ+((k − q)2 −m2
ψ) + δ+((k + p)2 −m2

ψ)

(k2 −m2
ψ + iε)((k − q)2 −m2

ψ + iε)((k + p)2 −m2
ψ + iε)

]
,(11)

where δ+(q2−m2
ψ) ≡ (q2−m2

ψ + iε)θ(q0)δ(q2−m2
ψ). Give a diagrammatic interpretation of this

expression which justifies the name of Loop-Tree Duality. Now solve the δ+ functions in order
to explicitly find the following 3-dimensional integral representation:

I(q, p,mψ) =

∫
d3~k

1

(2π)3

[
1

2E1

1

(η̄++
12 − q0)(η̄+−

12 − q0)

1

(η̄++
13 + p0)(η̄+−

13 + p0)

+
1

(η̄++
21 + q0)(η̄+−

21 + q0)

1

2E2

1

(η̄++
23 + p0 + q0)(η̄+−

23 + p0 + q0)

+
1

(η̄++
31 − p0)(η̄+−

31 − p0)

1

(η̄++
32 − p0 − q0)(η̄+−

32 − p0 − q0)

1

2E3

]
, (12)

where we have defined Ei =
√
|~k + ~qi|2 +m2

ψ, with qi = {0,−q, p}, and η̄
σiσj
ij = σiEi + σjEj

with σk ∈ {−1, 1}. Notice that the expression above can be written even more concisely by
introducing the following notation including energy shifts: η

σiσj
ij = σiEi + σjEj + σi(q

0
j − q0

i):

I(q, p,mψ) =

∫
d3~k

1

(2π)3

[
+

1

2E1

1

η++
12 η+−

12

1

η++
13 η+−

13

+
1

η++
21 η+−

21

1

2E2

1

η++
23 η+−

23

+
1

η++
31 η+−

31

1

η++
32 η+−

32

1

2E3

]
. (13)

3

1.5 We refer to η+−
ij and η−+

ij as Hyperobilic surfaces, or H-surfaces, and η++
ij as Ellipsoid surfaces,

or E-surfaces. Notice that η+−
ij = −η+−

ji . The surface defined by the solution of η±±ij (~k) = 0
is important as it defines the location of potential singularities preventing direct numerical
integration over the loop momentum ~k.

1.5.a Indicate on the 2D diagram (k0, kx) of Ex. 1.3 where the singularities of the H- and E-
surfaces are located.

1.5.b Sketch what the E-surface defined by η++
23 (~k) = 0 looks like formψ = 0 and p = (1, 0, 0, 1), q =

(1, 0, 0,−1) in the (kx, ky) plane, and then in the (ky, kz) plane.

1.5.c Work out the existence condition of all three E-surfaces η++
12 ,η++

31 and η++
32 (when can

η±±ij (~k) = 0 have a solution for these surfaces?). What happens whenmψ = 0 ormS > 2mψ?

1.6 [OPTIONAL] The previous exercise demonstrated that the E-surface singularities are not prob-
lematic when we have either non-physical so-called euclidean kinematics, where p2 < 0, q2 < 0
and (p+ q)2 < 0, or when mS < 2mψ and mψ > 0. There however remains potential H-surface
singularities. Thankfully, and somewhat amazingly, these can be shown to be spurious singular-
ities, in the sense that they all cancel pair-wise between the three terms of Eq. 10 (each of these
terms is typically refered to as a cut). It is even possible to make such cancellations manifest by
algebraically manipulating Eq. 10. Show that it can be identically rewritten as:

I(improved)(q, p,mψ) =

∫
d3~k

1

(2π)3

1

(2E1)(2E2)(2E3)

[
1

η++
31 η++

32

+
1

η++
12 η++

32

+
1

η++
12 η++

13

+
1

η++
13 η++

23

+
1

η++
21 η++

23

+
1

η++
21 η++

31

]
. (14)

Hint: Rewrite Eq. 10 using, at opportune places, the partial fractioning identity: 1
xy = 1

y−x

(
1
x −

1
y

)
The expression is now manifestly free of H-surface singularities, and is also numerically more
stable since it does not involve large cancellations between cuts. This improved LTD ex-
pression is therefore superior for both theoretical singularity analysis (all physical singular-
ities can be read directly from the denominators), but also for numerical implementations.
A very elegant algorithm was recently established for systematically deriving such improved
LTD expressions (called the Cross-Free Family representation) for any (multi-)loop integral, see
https://arxiv.org/pdf/2211.09653.pdf.

4

https://arxiv.org/pdf/2211.09653.pdf

12.2 Code part

We are now ready to perform the numerical implementation of the integral of Eq. (10). In the code,
we will not concern ourselves with explicitely relating that integral to the decay rate, as this is fairly
trivial as shown above in Eqs. (1) and (2). Here are some general guidelines to this part:

a. The code template you will start from is provided to you through the tarball named
numerical code.tar.gz. It requires Python3.11+, and also Rust for an optional part of exer-
cise. The necessary Python3.11+ dependencies can be installed with pip. You can download
the tarball from the course website and extract it with the following command:

tar -xzf numerical_code.tar.gz

The Python file containing the main code is called triangler.py.

b. It is recommended to write your code using the Visual Studio Code (VSC) Integrated Develop-
ment Environment (IDE). If you are working with the computers in rooms A94 or A95 of the
University of Bern, then you can immediately get VSC and Python3.11+ by downloading the
tarball UBUNTU RESOURCES.tar.gz containing pre-compiled binaries.

c. As some parts of this assigment are more advanced, they are indicated as optional. Their
completion can however increase the grade of this exercise by up to a bonus of 40% (with the
possibly of exceeding 100%). The optional final challenge can grant an additional 10% bonus.

d. This exercise sheet does not contain all the technical details necessary to complete the code.
Similarly as when carrying an actual research project, you will need to consult relevant online
resources and/or pro-actively ask tutors for help.

e. All parts of the code raising a NotImplemented Python error with a message pointing to an
exercise number indicates parts of the code you are supposed to fill in.

f. You are expected to submit the completed code as a tarball named
numerical code solution <your name>.tar.gz, including within it a report (named
numerical code report.pdf) describing your solution for the theoretical exercises as well as
for the code exercises when explanations are requested.
Also include a file commands.makefile that lists the commands (and only those) you use to test
the implementation of each coding exercise you completed. Example content of this file:

all: Ex2.1 Ex2.2 # List here all exercises you completed

Ex2.1:

echo "Commands for Ex2.1"

python3 triangler.py ... # First command

python3 triangler.py ... # Second command, etc..

Ex2.2: # Place your commands below for Ex2.2, and similarly for all others

The advantage is then that you can easily run all your commands with make -f commands.makefile,
or those for one particular exercise with, e.g., make -f commands.makefile Ex2.2.

g. The solution code is also provided to you with the password-protected zipped folder
numerical code solution.zip. The password will be given to you after submission.

h. Do not hesitate to ask technical questions on our Zulip collaborative chat in order to allow you
to quickly progress with the code.

5

2.1 You can obtain help for the available commands of the code triangler.py by running:

python3 triangler.py --help; python3 triangler.py <subcommand> --help

However, the template code you receive will not run the above yet, as you first exercise is to
add the analytical result subcommand in the command line parser, as well as the --m psi

option (with default value 0.02) to allow the user to specify the mass of the internal propagator.
You must then implement the function analytical result which specifies our target analytical
result of Eq. (7). You should now be able to obtain the following output:

python3 triangler.py analytical_result

{...} Analytical result: +8.0863564465181099e+00 +0j GeV^{-2}

This will be our target result for the numerical evaluation of the integral of Eq. 6.

2.2 Implement the 3-dimensional LTD integrand I(q, p) of Eq. (10) in the Python function
python integrand provided in the template code. You can run the inspect subcommand to
test your implementation:

python3 triangler.py inspect --point 0.1 0.2 0.3

{...} Integrand evaluated at loop momentum k = {...} : +1.0608105032736712e-01

Notice that you can add additional debug printouts to help debug your implementation with
logger.debug("...") statements that will only be shown on the screen when running the code
with the -v debug option.

2.3 [OPTIONAL] Implement the improved version of the LTD expression of Eq. (11) in the same
python integrand function. You can test your implementation with the inspect subcommand
again, but with the main option --improved ltd. You should find the same result as before,
but with progressively more different trailing digits as your increase the norm of the test point
~k (because of numerical instabilities plaguing the naive implementation).

2.4 [OPTIONAL] Python offers a lot of flexibility but not much performance. Other compiled lan-
guages, like Rust can offer much better run-time performances at the expense of a more complex
syntax. It is however possible to combine the best of both worlds with hybrid implementations.
To illustrate this, implement the improved LTD expression in the rust integrand function and
the src/lib.rs (which uses https://pyo3.rs/v0.20.0 to allow Python to call Rust functions).
You can again test your implementation with the options --improved ltd -ii rust.

2.5 We must now parameterise the integration space. Implement both cartesian and spherical
coordinate parameterisations of the R3 domain from the unit hypercube (0, 1)3 in the func-
tions cartesian parameterize and spherical parameterize. A map from the compact in-
terval (0, 1) to the infinite domain (−∞,∞) is called a conformal map. The polynomial map
r(x) = 1/(1 − x) − 1/x is such a map. For the spherical parameterisation, use an anologuous
conformal polynomial map mapping to the domain (0,∞) instead. For the cartesian parameter-
isation, use a similar conformal map using logarithmic functions instead. You can indirectly test
your implementation with the inspect subcommand by sampling the integrand from within the
unit hypercube, i.e. in x space (below using an overall scale of 10 mS for the conformal maps):

python3 triangler.py -param spherical inspect --x_space -p 0.1 0.2 0.3

{...} : +1.4783327522266039e+05 (excl. jacobian = +1.9153133080870564e-04)

6

https://pyo3.rs/v0.20.0

with the input variables x1 controling the radius, x2 the cosine of the azimuthal angle and x3

the polar angle. Cartesian parameterisation can be tested similarly with the -param cartesian

option. Note that depending on the details of your implementation you may not reproduce
exactly the result above. This is fine so long as the numerical integration still converges to the
correct result in the later parts of this exercise.

2.6 Before actually integrating our LTD expression, it is interesting to plot the integrand. The plot

function is already mostly implemented for you, but you must properly implement its call in the
main function. Then find out the proper way of calling that subcommand to obtain a plot that
will support your answer these two questions (and do not forget to specify the corresponding
commands in the file commands.makefile of your submission):

– 2.6.a Describe the region in momentum space seems to receive the largest contribution?

– 2.6.b Which variable in x-space is the integrand most sensitive to? Around which value
does it seem to be maximal?

2.7 [OPTIONAL] Implement support for 3D plots (e.g. by using the mpl toolkits.mplot3d func-
tion of matplotlib). You can then use the plot subcommand with the option -3D to obtain a
3D plot of the integrand.

2.8 We are now ready to implement the integrator. Build a simple naive integrator (without any
importance sampling) in the naive integrator function. The simplest Monte-Carlo estimator
of the central value of the integral is < I >= 1

N

∑N
i=1wi and of its error (directly deduced from

the square root of its variance σ2) is < ∆I >=
√

<σ2>
N =

√∑N
i=1 w

2
i /N−<I>2

N . The integrand

function to integrate is called integrand xspace. Make sure to populate all fields of the object
IntegrationResult returned by the function (read the functions defined in that class as they
can prove to be useful for your implementation). You can test your implementation with the
integrate subcommand:

./triangler.py -param spherical integrate -n 10 -ppi 10000 \

-it naive -nc 1 -s 1337

{...}

| > Integration result after 100000 evaluations in 0.89 CPU-s (8.9 µs / eval)

| > Max weight encountered = 4.70280e+01 at xs = [1.4346293742677796e-01 {...}]

| > Central value : +8.0764146899228422e+00 +/- 3.29e-02 (0.408%)

| > vs target : +8.0863564465181099e+00 d = -9.94e-03 (-0.123% = 0.30s)

Explain what are the quantities shown in the output and their meaning. Run the above again
using the cartesian parameterisation and compare the variance. What do you observe? Why?

2.9 [OPTIONAL] Implement multicore parallelisation in your naive integrator (e.g. using
multiprocessing.Pool) for the multiple calls to integrand xspace and test it with the --n core 8

option. You will observe negligible improvement because the LTD integrand function is extremely
simple in this case so that the rest of the non-parallelized code (e.g. parameterisation) is the bot-
tleneck. You can however add an artificial time.sleep(0.1) statement in integrand xspace in
order to clearly see improvement from the parallelization (do not forget to remove it afterwards!).

7

2.10 Adaptive importance sampling is a common improvement to naive Monte-Carlo integration. The
idea is to sample more densely the regions of the integrand where it is largest. This strategy is
implemented in multiple public libraries such as https://pypi.org/project/vegas. The code
provided already has a complete implementation using it in the function vegas integrator.
Find out the options for using this integrator using the help of the integrate subcommand and
explain what is shown in the output. Report and compare the variance obtained in this case
with the one obtained using your naive integrator.

2.11 [OPTIONAL] Multi-channeling is another common variance reduction technique. It consists in
splitting the integrand into multiple channels, each of which is integrated separately with an
appropriate optimised parameterisation (see additional information given during the exercise
session). The total integral is then obtained by summing the results of each channel. Implement
this technique for our LTD integrand in order to mitigate the impact on the variance introduced
by the 1

E1E2E3
prefactor. You build the multi-channeled integrand by identically multiplying the

integrand with
E−α1 +E−α2 +E−α3

E−α1 +E−α2 +E−α3

= 1, where α is a free hyper-parameter that can be optimized.

You must implement this in the function integrand xspace and then use the integrate sub-
command with the option -mc to test it. For this simple integrand, you should find a marginal
but measurable improvement in the variance. You should also ideally observe a reduction in the
maximum weight encountered.

2.12 [OPTIONAL] The library https://symbolica.io/docs/numerical_integration.html offers
powerful computer algebra functions, but also numerical integration routines including adaptive
sampling. Besides a convenient interface and workflow offering maximum flexibility to the user
regarding how they want to steer the numerical integration, it also offers the possibility of
having a discrete important sampling over the integration channels. Implement the Symbolica

integrator in the function symbolica integrator and compare the resulting variance with that
obtained with the other integrators, especially when using multi-channeling.

8

https://pypi.org/project/vegas
https://symbolica.io/docs/numerical_integration.html

2.13 [Final showdown: OPTIONAL] The presence of the loop propagator mass mψ significantly
smoothened the LTD integrand, especially the prefactor 1

E1E2E3
. It would be interesting to also

compute this triangle integral in a case where mψ = 0. However, in that situation, one faces
the E-surfaces singularities discussed in Ex. 1.5. The solution to their numerical regularisation
is very interesting, although beyond the scope of this exercise. However, we can still choose to
set mψ = 0 and work within the unphysical Euclidean regime where p2 < 0, q2 < 0, (p+ q)2 < 0
so as to avoid these singularities. You can verify that the following integral indeed converges:

python3 triangler.py -param spherical --m_s 1. --m_psi 0. \

-p 0. 0. 0. 5. -q 1. 4. 3. 2. integrate -n 10 -ppi 10000 -it naive -nc 1 -s 1337

{...}

| > Integration result after 100000 evaluations in 0.84 CPU-s (8.4 µs / eval)

| > Max weight encountered = 1.10389e-02 at xs = [3.5194430845095082e-01 {...}]

| > Central value : +3.8647388792273368e-04 +/- 2.23e-06 (0.577%)

although our target analytical expression is not valid in this regime.

A useful figure of merit for the efficiency of an implementation of a numerical integration algo-
rithm is the (square-root) of the variance estimator normalized to the central value of the integral,
that is: σ̄(I) =

√
N <∆I>

<I> . The goal of this final challenge is to optimize your implementation
by adjusting hyperparameters, improving integrators, customising multi-channel definitions or
even coming up with custom parameterisations so as to minimize σ̄(I). The subcommands plot
and inspect (with additonal debug printouts and typically run on the maximum weight point
reported after integration) can be useful when investigating such optimizations.

You will be ranked according to σ̄(I1) + σ̄(I2) + σ̄(I3) where I1 is the integral with the original
physical parameters (i.e. that of Ex. 2.8), I2 is the integral with the parameters above, and I3 an
integral with parameters kept secret to you so as to avoid your solution to be good solely thanks
to overfitting (thus encouraging you to come up with generically applicable improvements).

Specify what command line you wish to be used when testing (include it in the commands.makefile
file of your submission) and report what σ̄(I1) and σ̄(I2) you obtained when running this com-
mand yourself. The total number of sample points your command induces must lie between 106

and 107 sample points. The winner will be awarded an additional 10% bonus to their grade.

Q&A Think critically! In light of the above, include in your report any questions you may have
regarding this methodology, its shortcomings and obstacles you may foresee when applying it
to more complex integrals of actual interest in high-energy physics. These will be collected and
reviewed together the week after its submission. (this part is not graded)

9

	Loop calculations: numerical approach
	Theory part
	Code part

