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I. Canonical quantization of the free scalar field

1. Verify that

ϕ(t,~x) =
∫ dDk√

(2π)D2ωk
[a(~k)e−i(ωkt−~k·~x) + a†(~k)ei(ωkt−~k·~x)] (1)

with ωk =
√
~k2 + m2 fulfills the field equation

(∂2 + m2)ϕ = 0. (2)

This is rather straightforward. For convenience, we can rewrite Eq. (1) as

ϕ(t,~x) =
∫ dDk√

(2π)D2ωk

[
a(~k)e−ikx + h.c.

]
k0=ωk

, (3)

where h.c. stands for ”Hermitean conjugate”, and the expression inside the
square brackets is evaluated on-shell, i.e. k0 = ωk ≡

√
~k2 + m2. When the

Laplacian ∂2 is applied to this expression, it only affects the exponentials, thus
bringing some k2 down. Since k is taken on-shell, it satisfies the equation of
motion. Explicitly,

(∂2 + m2)ϕ =
∫ dDk√

(2π)D2ωk

[
((−ik)2 + m2)a(~k)e−ikx + h.c.

]
k0=ωk

= 0

(4)
because −k2 + m2 = −ω2

k +
~k2 + m2 = 0.

2. Verify that
[a(~k), a†(~k′)] = δ(D)(~k−~k′) (5)

implies the canonical commutation relation

[π(t,~x), ϕ(t,~x′)] = −iδ(D)(~x−~x′). (6)

Starting from Eq. (3), we find that π ≡ ϕ̇ is given by

π(t,~x) =
−i
2

∫ dDk√
(2π)D

√
2ωk

[
a(~k)e−ikx − h.c.

]
k0=ωk

. (7)

Now, plugging Eq. (3) and (7) in an equal-time commutator, we expect four
commutators of the form [a, a], [a†, a], [a, a†] and [a†, a†]. But the first and the
last vanish, so let us write explicitly the non-vanishing ones only:

= − i
2

∫∫ dDkdDk′

(2π)D

√
2ωk
2ωk′

[
[a(~k), a†(~k′)]e−ikx+ik′x′

−[a†(~k), a(~k′)]eikx−ik′x′
]

on−shell
,

(8)
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where both k and k′ are taken on-shell in the square brackets. Using Eq. (5),
we can greatly simplify this expression as follows:

= − i
2

∫ dDk
(2π)D

[
eik(x′−x) + eik(x−x′)

]
on−shell

= −i
∫ dDk

(2π)D ei~k(~x−~x′)

= −iδ(D)(~x−~x′),

(9)

where, from the first line to the second one, we used the fact that k(x′ −
x) = −~k(~x′ − ~x) because x′ and x are taken at the same time t, and we
then changed ~k → −~k in one of the exponentials. This is the canonical
commutation relation of the field operators. However, Eq. (3) is not manifestly
Lorentz invariant because of the measure. Instead, one often encounters the
following measure:

dΩk ≡
dDk
(2π)D

1
2ωk

, (10)

where the factor of 2 is purely conventional. It can be shown that it is indeed
invariant under (proper orthochronous) Lorentz transformations. In particular,
we’ve already used it in the Feynman propagator and concluded that the latter
was Lorentz invariant, as needed. Moreover, if one wants to normalize the
field operators φ and π so as to integrate their Fourier modes over this
measure, one needs to normalize the ladder operators in the appropriate way,
namely:

[a(~k), a†(~k′)] = 2ωk · (2π)Dδ(D)(~k−~k′). (11)

II. Loop amplitude from the canonical formalism

Calculate the amplitude of the process shown in the figure using the canonical forma-
lism.

⑧
One could have written down the amplitude directly as

i
M= l- it)" (kytkst ka ) - m2 tie (3.39)

The internal line is associated with a virtual particle with h- momentum

Kut les t ko , whose square is not necessarily = in?

Since we are dealing with identical particles , the full amplitude must be

symmetrized in the momenta. The line labeled Ks could also have been

labeled ku , Ks or ka .
We have to write down and add up all four possibilities .

Ex . 3 : A loop diagram kzr ' ka

Next
,
we study a loop diagram . From the Feynman rules,

kn n kat ke-k

we find tix211174 ka - int ie cut ka-ki -metie .

13.40)

The above amplitude is only large when either or both

particles propagating in the Loop are close to being ou-shell
.

'
ka II

Note that for large k, the integrand goes as Yk
" and the integral diverges :

Idek ÷ f.
spooky

've

flkpdlkl drifts = STET de n log 1kt •
.

We will discuss this point in detail later on. kzr ' ka

E X
.
U : Mote loops r a

pig
-r n Ketka-r

Let's put in another loop . We have a lot of freedom in ,

q

r p
7 krtkz - p

how to label the internal lines
,
but of course we have

to respect momentum conservation at the vertices . '
ka KI

writing down a coupling for each vertex, a propagator for each internal line

and integrating over p , q and r , we get (disregarding symmetry factors) :
i

fix)4 J TILT TILT LITT p me + ie Ck.+ k!pp.mz.ie q2 - ima +ie (p- g - ri! - untie r untie Cketkz-rt- matie
.

Also this integral diverges . (s . 41)

Let us first introduce the theoretical framework needed for this computation.
The scattering operator S is defined as the limit of the time-evolution operator
UI(t, t′) in the interaction picture, i.e. S = UI(+∞,−∞) where UI(t, t′) satisfies

i
∂

∂t
UI(t, t′) = HI(t)UI(t, t′), (12)
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with HI(t) =
∫

dDxHI the interaction part of the full Hamiltonian H. Solving
this equation is non-trivial in the interaction picture, but if the interaction can be
considered to be sufficiently small, one can solve it iteratively to get

U(t, t′) = T
[
e−i

∫ t
t′ dt′′ HI(t′′)

]
, (13)

where T stands for the time-ordered product of the operators it acts on, which means
they are arranged from left to right so that t1 > t2 > . . . > tn. Moreover, if we
consider the (large, but not universal) class of theories for which the interaction
does not contain derivatives of the fields, we can write the interaction Lagrangian
density as LI = −HI, and we thus have

S = T
[
ei
∫

dD+1xLI
]

. (14)

This operator describes the time evolution of free particle states |i〉 coming from
the far past into free particle states in the remote future | f 〉 where some non-trivial
scattering may have occurred at some finite time. Such states are created out of the
free theory vacuum |0〉 upon acting with creation operators. For any such pair of
states, we define an element of the S-matrix as 〈 f | S |i〉.

To be more concrete, let |i〉 = a†(~ki) . . . a†(~k1) |0〉 ≡ |ki, . . . , k1〉 and | f 〉 =

a†(~ki+1) . . . a†(~k j) |0〉 ≡ |ki+1, . . . , k j〉. We then define the scattering amplitude
M(i→ f ) through

〈 f | S |i〉 = 1 +
(2π)D+1δ(D+1)

(
∑i

l=1 kl −∑
j
l=i+1 kl

)
∏

j
l=1

√
(2π)D2ωkl

·M(i→ f ), (15)

where all kl ’s are understood to be on-shell. That is, the scattering amplitude enco-
des the non-trivial part of the scattering up to an overall momentum conservation
and some normalization factor. One can access this quantity to any desired order in
the coupling constant(s) upon expanding our master formula, Eq. (14). This typical-
ly generates a (time-ordered) bunch of fields in between creation and annihilation
operators. For a scalar field, we typically face expressions like

〈0| a(~k j) . . . a(~ki+1)T[φ(x1) . . . φ(xn)]a†(~ki) . . . a†(~k1) |0〉 . (16)

Evaluating such an expression is made rather simple thanks to Wick’s theorem,
which states that it equals

∑
f ull

a(~k j) . . . a(~ki+1) · φ(x1) . . . φ(xn) · a†(~ki) . . . a†(~k1), (17)

where the sum runs over all fully contracted expressions. But what are these
contractions? Well, the contraction from below is simply the vacuum expectation
value of the two contracted terms. In particular,

φ(x)a†(~k) ≡ 〈0| φ(x)a†(~k) |0〉 = e−ikx√
(2π)D2ωk

∣∣∣∣∣
k0=ωk

a(~k)φ(x) ≡ 〈0| a(~k)φ(x) |0〉 = eikx√
(2π)D2ωk

∣∣∣∣∣
k0=ωk

.

(18)
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The one from above is the vacuum expectation value of the time-ordered product
of the two contracted terms, e.g.

φ(x)φ(y) ≡ 〈0| T[φ(x)φ(y)] |0〉 = iD(x− y) =
∫ dD+1k

(2π)D+1
ieik(x−y)

k2 −m2 + iε
. (19)

Let us see how this machinery applies to the concrete case of a φ4-interacting
scalar theory, i.e. LI = − λ

4! φ
4. To investigate the given diagram, we expand Eq. (14)

to quadratic order in λ and we evaluate the S-matrix element 〈k4, k3| S |k2, k1〉:

〈k4, k3| S |k2, k1〉λ2 =
1
2!

(
−iλ
4!

)2 ∫∫
xy
〈0| a(~k4)a(~k3)T[φ4(y)φ4(x)]a†(~k2)a†(~k1) |0〉 ,

(20)
where

∫∫
xy stands for

∫∫
dD+1xdD+1y. Among all the terms generated by Wick’s

theorem, only specific ones correspond to the diagram. They are the ones for which
the incoming momenta k1 and k2 are connected to the first vertex at position x and
the outgoing momenta k3 and k4 to the second vertex at position y (external legs),
while the two vertices are connected together twice (internal legs). Typically,

k1

k

k3

k2

k′

k4

∼ −λ2
∫∫

xy
a(~k4)a(~k3)φ(y)φ(y)φ(y)φ(y)φ(x)φ(x)φ(x)φ(x)a†(~k2)a†(~k1).

But now, evaluating this expression is easy thanks to Eq. (18) and (19). Up to a
symmetry factor, we have

k1

k

k3

k2

k′

k4

∼ −λ2
∫∫

xy

∫∫
kk′

ieik(x−y)

k2 −m2 + iε
ieik′(x−y)

k′2 −m2 + iε

 eiy(k3+k4)e−ix(k1+k2)

∏4
i=1

√
(2π)D2ωki


on−shell

,

(21)
where

∫∫
kk′ stands for

∫∫ dD+1kdD+1k′
(2π)2(D+1) and all ki’s in the square bracket are on-shell.

Note that the only x- and y-dependence is in the exponentials, so that

∫∫
xy

eix(k+k′−k1−k2)eiy(k3+k4−k−k′)

(2π)2(D+1)
= δ(D+1)(k+ k′− k1− k2)δ

(D+1)(k1 + k2− k3− k4).

(22)
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We further integrate over k′ to get

k1

k

k3

k2

k′

k4

∼ (2π)D+1δ(D+1)(k1 + k2 − k3 − k4)

∏4
i=1

√
(2π)D2ωki

× (−λ)2
∫ dD+1k

(2π)D+1
i

k2 −m2 + iε
i

(k1 + k2 − k)2 −m2 + iε
, (23)

where the ki’s are now understood implicitly to be on-shell. This leads us to the
conclusion that the scattering amplitude corresponding to this diagram is given, up
to a symmetry factor, by

M(i→ f ) ∼ −λ2
∫ dD+1k

(2π)D+1
i

k2 −m2 + iε
i

(k1 + k2 − k)2 −m2 + iε
(24)

which hopefully doesn’t come as a surprise!

III. Charge of the free complex scalar field

Express the charge in terms of creation and annihilation operators:

Q = i
∫

dDx(ϕ†∂0ϕ− ∂0ϕ† ϕ). (25)

Let us first rewrite the charge as

Q =
∫

dDx
[
φ†(t,~x) · iπ(t,~x) + h.c.

]
(26)

where we have
ϕ†(t,~x) =

∫ dDk√
(2π)D2ωk

[
a†(~k)eikx + b(~k)e−ikx

]
k0=ωk

iπ(t,~x) = 1
2

∫ dDk√
(2π)D

√
2ωk′

[
a(~k′)e−ik′x − b†(~k′)eik′x

]
k′0=ωk′

.
(27)

The charge thus reads

Q =
1
2

∫
dDx

∫∫ dDkdDk′

(2π)D

√
2ωk′

2ωk
·
[

I(t,~x,~k,~k′) + h.c.
]

, (28)

where

I(t,~x,~k,~k′) = a†(~k)a(~k′)ei[t(ωk−ωk′ )−~x(~k−~k′)] − b(~k)b†(~k′)e−i[t(ωk−ωk′ )−~x(~k−~k′)]

− a†(~k)b†(~k′)ei[t(ωk+ωk′ )−~x(~k+~k′)] + b(~k)a(~k′)e−i[t(ωk+ωk′ )−~x(~k+~k′)].
(29)

Integration over ~x turns part of these exponentials into δ-functions:∫ dDx
(2π)D ei~x(~k±~k′) = δ(D)(~k±~k′), (30)
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which, in turn, kills an integration over the momentum. We are left with

Q =
1
2

∫
dDk

[{
a†(~k)a(~k)− b(~k)b†(~k)

}
+ h.c.

]
+
[{

b(~k)a(−~k)e−2iωkt − a†(~k)b†(−~k)e2iωkt
}
+ h.c

]
.

(31)

The first curly bracket is obviously a real expression and adding the hermitean
conjugate merely doubles it. The second curly bracket, however, is purely imaginary
and vanishes against the hermitean conjugate. Indeed,[

b(~k)a(−~k)e−2iωkt
]†

= a†(−~k)b†(~k)e2iωkt (32)

and, upon replacing~k → −~k, this kills the second term in the curly bracket, and
vice-versa. We finally get

Q =
∫

dDk
[

a†(~k)a(~k)− b(~k)b†(~k)
]

. (33)

We often see the normal-ordered version of this expression, which means that
creation operators are placed on the left of annihilation operators. The price to pay
to exchange b and b† is an infinite shift coming from their commutation relation
integrated over the whole space. As usual in QFT, we don’t bother too much about
such shifts and one should therefore not be surprised to see the charge written as

Q =
∫

dDk
[

a†(~k)a(~k)− b†(~k)b(~k)
]

. (34)
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