Quantum Field Theory I

Majorana Fermions

[3.4 from Peskin \& Schröder]

1. We have seen in the lecture that one can write the Dirac equation for Weyl spinors $\psi=\binom{u_{+}}{u_{-}}$as

$$
\begin{aligned}
& i \bar{\sigma}^{\mu} \partial_{\mu} u_{+}=0, \\
& i \sigma^{\mu} \partial_{\mu} u_{-}=0 .
\end{aligned}
$$

We also discussed in the lecture how the different components $u_{ \pm}$transform under Lorentz transformations.

One can write a relativistic equation for a massless 2 -component fermion field that transforms as the upper two components of a Dirac spinor, i.e. like u_{+}. We will call such a 2-component field $\chi(x)$.
(a) Show that it is possible to write an equation for $\chi(x)$ as a massive field in the following way:

$$
i \bar{\sigma} \cdot \partial \chi-i m \sigma^{2} \chi^{*}=0
$$

That is, show, first, that this equation is relativistically invariant and, second, that it implies the Klein-Gordon equation, $\left(\partial^{2}+m^{2}\right) \chi=0$. This form of the fermion mass is called a Majorana mass term.
(b) Does the Majorana equation follow from a Lagrangian? The mass term would seem to be the variation of $\left(\sigma^{2}\right)_{a b} \chi_{a}^{*} \chi_{b}^{*}$; however, since σ^{2} is antisymmetric, this expression would vanish if $\chi(x)$ were an ordinary c-number field. When we go to quantum field theory, we know that $\chi(x)$ will become an anticommuting quantum field. Therefore, it makes sense to develop its classical theory by considering $\chi(x)$ as a classical anticommuting field, that is, as a field that takes as values Grassmann numbers which satisfy (remember the theoretical exercises!)

$$
\alpha \beta=-\beta \alpha \quad \text { for any } \alpha, \beta .
$$

Note that this relation implies that $\alpha^{2}=0$. A Grassmann field $\xi(x)$ can be expanded in a basis of functions as

$$
\xi(x)=\sum_{n} \alpha_{n} \phi_{n}(x),
$$

where the $\phi_{n}(x)$ are orthogonal c-number functions and the α_{n} are a set of independent Grassmann numbers. Define the complex conjugate of a product of Grassmann numbers to reverse the order:

$$
(\alpha \beta)^{*} \equiv \beta^{*} \alpha^{*}=-\alpha^{*} \beta^{*} .
$$

This rule imitates the Hermitian conjugation of quantum fields. Show that the classical action,

$$
S=\int d^{4} x\left[\chi^{\dagger} i \bar{\sigma} \cdot \partial \chi+\frac{i m}{2}\left(\chi^{T} \sigma^{2} \chi-\chi^{\dagger} \sigma^{2} \chi^{*}\right)\right]
$$

with $\chi^{\dagger}=\left(\chi^{*}\right)^{T}$ is real, i.e. $S^{*}=S$, and that varying this S with respect to χ and χ^{*} yields the Majorana equation.
(c) Let us write a 4 -component Dirac field as

$$
\psi(x)=\binom{u_{+}}{u_{-}},
$$

and recall that the lower components of ψ transform in a way equivalent by a unitary transformation to the complex conjugate of the representation u_{+}. In this way, we can rewrite the 4 -component Dirac field in terms of two 2component spinors:

$$
u_{+}(x)=\chi_{1}(x), \quad u_{-}(x)=i \sigma^{2} \chi_{2}^{*}(x) .
$$

Rewrite the Dirac Lagrangian in terms of $\chi_{1}(x)$ and $\chi_{2}(x)$ and note the form of the mass term.
(d) Show that the action of part (c) has a global symmetry. Compute the divergences of the currents

$$
J^{\mu}=\chi^{\dagger} \bar{\sigma}^{\mu} \chi, \quad J^{\mu}=\chi_{1}^{\dagger} \bar{\sigma}^{\mu} \chi_{1}-\chi_{2}^{\dagger} \bar{\sigma}^{\mu} \chi_{2},
$$

for the theories of parts (b) and (c), respectively, and relate your results to the symmetries of these theories. Construct a theory of N free massive 2 -component fermion fields with $O(N)$ symmetry (that is, the symmetry of rotations in an N-dimensional space).

