The interaction between a (Dirac) fermion ψ of mass m and a real scalar field ϕ of mass μ is governed by the Yukawa theory

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} \mu^{2} \phi^{2} + \overline{\psi} (i \gamma^{\mu} \partial_{\mu} - m) \psi - \lambda \phi \overline{\psi} \psi,$$

which is a generalisation of the toy model we considered in exercise 2. This theory couples fermions ψ , which we call nucleon field, to a real scalar ϕ which we interpret as a meson. We will investigate different scattering processes in this exercise sheet.

- 1. In this exercise we consider nucleon-nucleon scattering from the lecture $\psi \psi \rightarrow \psi \psi$.
 - (a) Draw the corresponding diagrams.
 - (b) Using the Feynman rules derived in the lecture, repeat the derivation of the amplitude.
- 2. We will now explore other scattering processes within the Yukawa theory:
 - (a) Consider $\psi \overline{\psi} \to \phi \phi$. Write down the amplitude. Follow the same steps as in 1.
 - (b) Consider $\psi \overline{\psi} \to \psi \overline{\psi}$. Write down the amplitude. Follow the same steps as before.
 - (c) * What happens for pure meson scattering $\phi \phi \rightarrow \phi \phi$? You should find a so-called loop integral which you do not need to solve. Investigate the high-momentum limit, i.e. the ultraviolet behaviour of the integral. Is it finite?
- 3. Let us go back to the first exercise and consider again $\psi \psi \rightarrow \psi \psi$. Calculate the complex conjugate of the amplitude you obtained in exercise 1.