- From MUonE to Scalar QED
 - 1. In the theoretical exercises you looked at the process $e^+e^- \rightarrow \mu^+\mu^-$. However, from a phenomenological point of view, there is currently more interest in muonelectron scattering, i.e. $\mu^-e^- \rightarrow \mu^-e^-$. The calculation of muon-electron scattering is important in the context of the upcoming MUonE experiment at CERN and has been calculated up to next-to-next-to-leading-order accuracy.
 - (a) Sketch the Feynman diagrams for $\mu^-e^- \rightarrow \mu^-e^-$. Calculate the matrix element and find the differential cross section in w.r.t the mandelstam variable t. Assume elastic scattering. Do not consider the electron or the muon as massless.
 - (b) Take the massless limit of your result and verify by using crossing symmetry that you find the same result you already obtained in the theoretical exercises.
 - 2. In this exercise we will investigate scalar QED, a theory which consists of a complex scalar field ϕ and a minimally coupled vector field A_{μ} . The Lagrangian reads

$$\mathcal{L} = (D_{\mu}\phi)(D^{\mu}\phi)^{\dagger} - m^{2}\phi^{\dagger}\phi - \frac{1}{4}\lambda\left(\phi^{\dagger}\phi\right)^{2} - \frac{1}{4}F^{\mu\nu}F_{\mu\nu},$$

with $F_{\mu\nu} = \partial_{\mu}A_{\nu}(x) - \partial_{\nu}A_{\mu}(x)$, and $D_{\mu} = \partial_{\mu} + ieA_{\mu}(x)$ is the covariant derivative coupling ϕ and A_{μ} .

(a) Derive the Feynman rules for this theory.

Hint: Try to expand the Lagrangian \mathcal{L} and look at all its terms. Can you identify the ones for the propagators of the ϕ and A_{μ} fields? The other terms describe interactions. You should find three terms. In Figure 1 you find the interaction vertices with their associated Feynman rules. Can you identify which term in the Lagrangian corresponds to which Feynman rule?

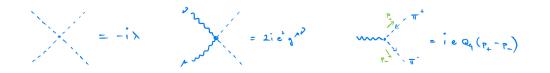


Figure 1: Feynman rules for the interactions in scalar QED.

(b) Calculate the matrix element of the process $e^+e^- \rightarrow \pi^+\pi^-$ using the Feynman rules you derived in (a).