
Quantum Field Theory II FS24

Series 1 - Perturbation theory: Divergences and CTs 21.02.2024

In the first lecture, you saw that for the so-called Model 2 (Coleman’s book), with Hamil-
tonian density

HI = gϕ(x)ρ(x), (1)

where ρ(x) is time-independent, one gets an absurd T-dependent result for ⟨0|S |0⟩. You
also saw why this problem arises and how it is tackled with the introduction of a counter-
term (CT) in the Hamiltonian density, that you tune so that you get ⟨0|S |0⟩ = 1. This is
a first introduction to the idea of CTs and their significance.

Now let’s try to compute the S matrix for Model 2. We work with the Hamiltonian with
the counterterm

HI = [g

∫
d3xϕ(x)ρ(x)− a]f(t), (2)

with f(t) the usual adiabatic function.

1. How many connected Wick diagrams one has in this case and why ?

Hint: See also discussion of Model 1 in Coleman, Ch. 8.

2. Draw the diagrams, define the operators corresponding to these diagrams and write the
expression for the S matrix in this case.

3. Only two of these contributions contribute to the vacuum-to-vacuum matrix element
⟨0|S |0⟩. Which are these and why should their sum be zero ?

Therefore, only one operator contributes to S.

4. Calculate the contribution to the S matrix.

5. Argue why limT→∞ S = 1 from the result of 4.

Now let’s try to compute the ground-state energy for the model 2. The condition for the
cancellation of the two diagrams (call them D2 and D3) is

lim
T→∞

[O2

2!
+O3

]
= 0 (3)

with O2 and O3 the corresponcing operators we have calculated in 2.

6. Show that

O2

2!
=

ig2

2!

∫
d3p

(2π)3
|ρ̃(p)|2

|p|2 + µ2

∫
dωp

2π
|f̃(ωp)|2 (4)

with the quantities with the tilde representing the Fourier tranform of ρ(x) and f(t)
respectively. Hint: Think of the behaviour of f̃(ωp) in the limit T → ∞.



7. Calculate the ground energy E0 of the theory.

Hint: Use Parseval’s Theorem, which states that

∫
dωp

2π
|f̃(ωp)|2 =

∫
dt|f(t)|2 (5)

and the relation between O2 and O3 from above.

8. Write now the expression for E0 into the position space and define

V (x) =

∫
d3p

(2π)3
eip·x

|p|2 + µ2
. (6)

What does this form remind you from electrostatics ? Observe some similarities and dif-
ferences between the two cases.

9. Perform this integral and find an expression for V (x). This potential is called Yukawa
potential.

Hint: Define |p| = p, |x| = r and move to spherical coordinates and reduce the integral
into an integral over p. Then use Cauchy’s theorem to compute the final integral.

10. Observe that if ρ(x) → δ3(x), then E0 → ∞.

This divergence is called an ultraviolet divergence, because in p-space it corresponds
to the integral blowing up at high |p|. We will see how to deal with these later on in the
course.

Now let’s calculate

⟨p1, ...,pn| |0⟩P . (7)

with |0⟩P the physical vacuum and |p1, ...,pn⟩ eigenstates of the non-interacting Hamil-
tonian H0. Consider that f(t) = eϵt, for t < 0 and f(t) = 0, for t > 0.

11. Argue that UI(−∞,+∞) |0⟩ = |0⟩P .

12. Use the results from Model 1 (Coleman, Ch. 8) to prove that:

⟨p1, ...,pn|UI(−∞,+∞) |0⟩ = e
1
2
(−α+iβ)h∗(p1)h

∗(p1) · · · h∗(pn), (8)

with

h(p) =
−igρ̃(p)f̃(ωp)

(2π)3/2
√

2ωp
(9)

13. Calculate α =
∫
d3p|h(p)|2 in the limit ϵ → 0.

Hint: Calculate first the Fourier transform of f(t) in the limit ϵ → 0.



14. If ρ(x) → δ3(x), what is the behaviour of α ? Is it divergent and, if yes, how does it
diverge ? Is it equally bad as for the divergence for the case of E0 in 10. ?

15. Prove that limµ→0 α = ∞. This is called an infrared divergence.

16. Prove that limµ→0 < E > is finite, with

< E >=

∫
d3p|h(p)|2ωp. (10)

This means that this divergence is also unphysical in the sense that, although an infinite
number of photons are radiated in this process, only a finite amount of energy is radiated.


