Quantum Field Theory II

Series 5 - Unstable particles

27.03.2024

The goal of this exercise is to calculate the exponential decay law for unstable particles.
As in the case of Breit-Wigner formula, we will use

$$
\begin{equation*}
\mathcal{L} \rightarrow \mathcal{L}+f(x) \phi(x) . \tag{1}
\end{equation*}
$$

The amplitude for detecting the particle at a distance y away from the spacetime point where the particle is produced is

$$
\begin{equation*}
A(y)=\int d^{4} x^{\prime} d^{4} x f\left(x^{\prime}-y\right)^{*} f(x)\langle 0| T\left(\phi\left(x^{\prime}\right) \phi(x)\right)|0\rangle, \tag{2}
\end{equation*}
$$

assuming that y is far later in time than x (hence the time ordering).

1. Prove that

$$
\begin{equation*}
A(y)=\int \frac{d^{4} k}{(2 \pi)^{4}}|\tilde{f}(k)|^{2} e^{-i k \cdot y} \frac{i}{k^{2}-\mu^{2}+i \mu \Gamma} . \tag{3}
\end{equation*}
$$

Hint: Assume that $f(x)$ is real, so that $\tilde{f}(k)=\tilde{f}(-k)^{*}$, and also that for the propagator one has the following approximation

$$
\begin{equation*}
\tilde{D}^{\prime}\left(k^{2}\right)=\frac{i}{k^{2}-\mu^{2}+i \mu \Gamma} . \tag{4}
\end{equation*}
$$

Now, we want to calculate analytically the expression above for large y^{2}. We will do that via the method of stationary phase, so let's open a small parenthesis to describe this method.

Suppose we have an integral of the form

$$
\begin{equation*}
I=\int d t e^{i \theta(t)} g(t) \tag{5}
\end{equation*}
$$

with $\theta(t)$ a real function that varies rapidly compared to the rate at which $g(t)$ varies. The main contribution to this integral comes at points of stationary phase, where

$$
\begin{equation*}
\frac{d \theta(t)}{d t}=0 \tag{6}
\end{equation*}
$$

because at these points $\theta(t)$ is not varying at all. Let's assume in our case that there is one such point t_{0}. We therefore approximate the integral by its value near the stationary phase point. Then, we get

$$
\begin{equation*}
I=e^{i \theta\left(t_{0}\right)} g\left(t_{0}\right) \int d t e^{\frac{1}{2} \theta^{\prime \prime}\left(t_{0}\right)\left(t-t_{0}\right)^{2}} \tag{7}
\end{equation*}
$$

This is a trivial Gaussian integral and the result is

$$
\begin{equation*}
I=e^{i \theta\left(t_{0}\right)} g\left(t_{0}\right) \sqrt{\frac{2 \pi}{\left|\theta^{\prime \prime}\left(t_{0}\right)\right|}} e^{i(\pi / 4) \operatorname{sgn}\left(\theta^{\prime \prime}\left(t_{0}\right)\right)} . \tag{8}
\end{equation*}
$$

Our integral in (3) is of stationary phase form, because we have a complex exponential with argument $k \cdot y$, and all four components of y are large. So we have four integrals we can do by stationary phase.
2. Use the method of stationary phase to prove that

$$
\begin{equation*}
A(y)=e^{i \pi} \frac{\mu}{2(2 \pi)^{2}}\left|\tilde{f}\left(k_{0}\right)\right|^{2} \int_{0}^{\infty} d s e^{-\frac{\Gamma s}{2}} \frac{1}{s^{2}} e^{-i \theta(s)} \tag{9}
\end{equation*}
$$

with $\theta(s)=\frac{\mu y^{2}}{2 s}+\frac{\mu s}{2}$.
Hint: Write the propagator as an integral using the following relation

$$
\begin{equation*}
\frac{i}{k^{2}-\mu^{2}+i \mu \Gamma}=\int_{0}^{\infty} \frac{d s}{2 \mu} e^{i(s / 2 \mu)\left(k^{2}-\mu^{2}+i \mu \Gamma\right)} . \tag{10}
\end{equation*}
$$

3. Use again the method of stationary phase to perform this last integral and prove that the final result is

$$
\begin{equation*}
A(y)=-\sqrt{\frac{\mu}{32 \pi^{3}}} e^{i \pi / 4}\left|\tilde{f}\left(k_{0}\right)\right|^{2} e^{-\frac{\Gamma s_{0}}{2}} s_{0}^{-3 / 2} e^{-i \mu s_{0}} \tag{11}
\end{equation*}
$$

with $k_{0}=\mu\left(y / s_{0}\right)$ and $s_{0}=\sqrt{y^{2}}$.
Hint: Since (9) has the large factor y^{2} in it, one can use the method of stationary phase for this integral too.

