Quantum Field Theory II

Series 6 - Renormalization of spin $-\frac{1}{2}$ theories

Part 1: The LSZ formula for fermions.

At first, let's set the scene: We will first consider the case of a Dirac field Ψ and assume that its interactions respect the $U(1)$ symmetry that gives rise to the conserved current $j_{\mu}=\bar{\Psi} \gamma_{\mu} \Psi$ and its associated charge Q. In the free theory, we can create the one-particle states by acting on the vacuum state with the creation operator:

$$
\begin{equation*}
|p, s,+\rangle=b_{s}^{\dagger}(\mathbf{p})|0\rangle, \quad|p, s,-\rangle=d_{s}^{\dagger}(\mathbf{p})|0\rangle \tag{1}
\end{equation*}
$$

where the label \pm on the ket indicates the value of the $U(1)$ charge Q and

$$
\begin{array}{cc}
b_{s}^{\dagger}(\mathbf{p})=\int d^{3} \mathbf{x} e^{i p \cdot x} \tilde{\Psi}(x) \gamma^{0} u_{s}(\mathbf{p}), & d_{s}^{\dagger}(\mathbf{p})=\int d^{3} \mathbf{x} e^{i p \cdot x} \bar{v}_{s}(\mathbf{p}) \gamma^{0} \Psi(x) \\
\langle p, s,+| \bar{\Psi}(x)|0\rangle=\bar{u}_{s}(p) e^{-i p \cdot x}, & \langle p, s,-| \Psi(x)|0\rangle=v_{s}(p) e^{-i p \cdot x} \tag{3}
\end{array}
$$

Let's focus on the + charge and consider an operator that creates a particle with definite spin, localized in monentun space near \mathbf{p}_{1}, and localized in position space near the origin:

$$
\begin{equation*}
b_{1}^{\dagger} \equiv \int d^{3} \mathbf{p} f_{1}(\mathbf{p}) b_{s_{1}}^{\dagger}(\mathbf{p}) \tag{4}
\end{equation*}
$$

where $f_{1}(\mathbf{p}) \propto \exp \left[-\left(\mathbf{p}-\mathbf{p}_{\mathbf{1}}\right)^{2} / 4 \sigma^{2}\right]$.
Let's now consider interactions and thus introduce the temporal variable too.

1. Prove that

$$
\begin{equation*}
b_{1}^{\dagger}(-\infty)-b_{1}^{\dagger}(+\infty)=i \int d^{3} \mathbf{p} f_{1}(\mathbf{p}) \int d^{4} x \bar{\Psi}(x)(i \not \partial+m) u_{s_{1}}(\mathbf{p}) e^{i p \cdot x} \tag{5}
\end{equation*}
$$

Hint: Consider that $b_{1}^{\dagger}(-\infty)-b_{1}^{\dagger}(+\infty)=-\int_{-\infty}^{+\infty} d t \partial_{0} b_{1}^{\dagger}(t)$ and also that $(\not p+m) u_{s}(\mathbf{p})=0$.
2. What would be the value of the expression in 1 . in the free theory and why ?
3. Prove that

$$
\begin{equation*}
b_{1}(+\infty)-b_{1}(-\infty)=i \int d^{3} \mathbf{p} f_{1}(\mathbf{p}) \int d^{4} x e^{-i p \cdot x} \bar{u}_{s_{1}}(\mathbf{p})(-i \not \partial+m) \Psi(x) \tag{6}
\end{equation*}
$$

Let's now consider a scattering experiment with two particles.
4. Calculate the transition amplitude from an initial state $|i\rangle=\lim _{t \rightarrow-\infty} b_{1}^{\dagger}(t) b_{2}^{\dagger}(t)|0\rangle$ to a final state $|f\rangle=\lim _{t \rightarrow+\infty} b_{1^{\prime}}^{\dagger}(t) b_{2^{\prime}}^{\dagger}(t)|0\rangle$, which is defined as

$$
\begin{equation*}
<f \mid i>=\langle 0| T b_{2^{\prime}}(+\infty) b_{1^{\prime}}(+\infty) b_{1}^{\dagger}(-\infty) b_{2}^{\dagger}(-\infty)|0\rangle \tag{7}
\end{equation*}
$$

Hint: Use the properties of the time-ordering T and also consider the limit $\sigma \rightarrow 0$, where $f_{1}(\mathbf{p})=\delta^{3}\left(\mathbf{p}-\mathbf{p}_{1}\right)$.

Part 2: Calculation of two loop integrals which appear in the renormalization of the spin- $\frac{1}{2}$ theory discussed in the lectures.
5. In the lectures you reached the expression for the nucleon self-energy:

$$
\begin{equation*}
\Sigma^{f}(\not p)=-i g^{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \int_{0}^{1} d x \frac{-\not p(1-x)+m}{\left[k^{2}+p^{2} x(1-x)-m^{2} x-\mu^{2}(1-x)+i \epsilon\right]^{2}} \tag{8}
\end{equation*}
$$

Solve this integral analytically.
Hint: Remember how you solved a similar integral in series 3 and leave the final expression as an integral over x.
6. In the lectures you reached the following expression for the meson self-energy

$$
\begin{equation*}
\tilde{\Pi}^{f}\left(k^{2}\right)=i g^{2} \int \frac{d^{4} q}{(2 \pi)^{4}} \cdot \operatorname{Tr}\left[\frac{i(\not k+\not q+m)}{(k+q)^{2}-m^{2}+i \epsilon} \cdot i \gamma_{5} \cdot \frac{i(\not q+m)}{q^{2}-m^{2}+i \epsilon} \cdot i \gamma_{5}\right] \tag{9}
\end{equation*}
$$

Solve this integral analytically.
Hint: Use again Feynman parametrization and express the final result as an integral over one Feynman parameter.

