Quantum Field Theory II

Series 7 - Loop calculations in spin- $\frac{1}{2}$ theories
17.04.2024

In this series, we will calculate the triangle diagram we calculated in the part 2 of series 4 , but in the spin- $\frac{1}{2}$ theories. In particular, we consider the Lagrangian of the Model 3 discussed in Coleman's chapter 23.

Consider the triangle diagram for an incoming nucleon of mass m and momentum p, an outgoing nucleon of mass m and momentum p^{\prime} and an incoming meson with mass μ and momentum $q=p^{\prime}-p$. In the following, consider the on-shell relations $p^{2}=p^{\prime 2}=m^{2}$, wherever needed.

1. Prove that the expression for this diagram can be written as:

$$
\begin{equation*}
-g^{3} \bar{u}\left(p^{\prime}\right) \gamma_{5} I u(p), \tag{1}
\end{equation*}
$$

with

$$
\begin{gather*}
I=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{\left(\not p^{\prime}+\not k+m\right) \gamma_{5}(\not p+\not k+m) \gamma_{5}}{D_{1} D_{2} D_{3}}, \tag{2}\\
D_{1}=\left(p^{\prime}+k\right)^{2}-m^{2}, \quad D_{2}=(p+k)^{2}-m^{2}, \quad D_{3}=k^{2}-\mu^{2} . \tag{3}
\end{gather*}
$$

2. Decompose the integral I in terms of the following integrals

$$
\begin{equation*}
C_{\{0, \mu, \mu \nu\}}=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{\left\{1, k_{\mu}, k_{\mu} k_{\nu}\right\}}{D_{1} D_{2} D_{3}} . \tag{4}
\end{equation*}
$$

Hint: Remember that $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu}$ and $\left\{\gamma^{\mu}, \gamma_{5}\right\}=0$.
3. Show that the term proportional to C_{0} is zero.

Hint: Consider the Dirac equation for the spinors.
4. Simplify the term proportional to C_{μ}, by considering the decomposition $C_{\mu}=p_{\mu} C_{1}+$ $p_{\mu}^{\prime} C_{2}$.
5. Prove that the final result of the contribution of the triangle diagram is

$$
\begin{equation*}
-g^{3} \bar{u}\left(p^{\prime}\right) \gamma_{5} u(p) G\left(q^{2}\right) \tag{5}
\end{equation*}
$$

and determine the function $G\left(q^{2}\right)$ in terms of $C_{0,1,2}$ as well as B_{0}, which is defined as

$$
\begin{equation*}
B_{0}=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{D_{1} D_{2}} . \tag{6}
\end{equation*}
$$

Notice that you have already calculated the integrals B_{0} and C_{0} in the previous series of this course and their results are known.
6. Work out explicit expressions (as loop integrals) for C_{1} and C_{2}.

Hint: Use the Feynman parametrization for the integral of C_{μ} and remember how you takled a similar integral in the part 2 of series 4. You might also find the following formula useful

$$
\begin{equation*}
\int \frac{d^{4} k^{\prime}}{(2 \pi)^{4}} \frac{1}{\left(k^{2}+a\right)^{3}}=\frac{i}{32 \pi^{2} a} . \tag{7}
\end{equation*}
$$

7. Optional: Provide a general decomposition of the loop integral $C_{\mu \nu}$ in terms of Lorentz tensors of second rank built out of the two momenta p_{μ} and p_{μ}^{\prime} and the metric tensor $g_{\mu \nu}$ multiplying scalar loop functions.
