Quantum Theory I

Vorlesungsbeschreibung

This is the first part of a three-semester introduction to quantum theory. After a brief introduction, the course covers wave–particle duality and the Schrödinger wave equation, the Heisenberg uncertainty principle, and the time-independent Schrödinger equation. We then derive solutions of the Schrödinger equation for simple one-dimensional problems: the particle in a box and the harmonic oscillator, free particles, scattering at potential steps, motion in periodic potentials, and quantum tunneling. Finally, we discuss the general formalism of quantum mechanics and its fundamental postulates, as well as time evolution in the Schrödinger and Heisenberg pictures.

Assistants

Literature

There are many excellent textbooks that provide an introduction to quantum theory, e.g.

  • Introduction to Quantum Mechanics
    D.J. Griffiths
  • Quantenmechanik
    T. Fliessbach
  • Quantum Physics
    S. Gasiorowicz
  • Quantentheorie
    G. Münster
  • Principles of Quantum Mechanics
    R. Shankar