Mechanics II

Lecture Description

  1. Lagrangian formulation of classical mechanics (calculus of variations, Hamilton’s principle, Lagrangian function and Euler–Lagrange equations, Noether’s theorem, constraints, relativistic particles)
  2. Hamiltonian (canonical) formulation of classical mechanics (Legendre transformation, Hamiltonian function, canonical equations, Poisson brackets, canonical transformations, phase space)
  3. Relation to quantum mechanics (path integral formulation and its classical limit)

 

Required Background

  • Mechanics I (Newtonian mechanics)
  • Differential and integral calculus
  • Vector analysis

Dozent

Prof. Dr. Mikko Laine (ExWi 117)

Assistants

Literature

The lecture follows the textbook

  • Mechanik (7. Aufl.)
    Thorsten Fliessbach
    Spektrum Verlag, Heidelberg, 2014
    available as an eBook via the UniBe network or through VPN at the following link

 

There are many other good books on the subject, e.g.

  • Theoretische Physik 1 / Mechanik
    Matthias Bartelmann, Björn Feuerbacher, Timm Krüger, Dieter Lüst, Anton Rebhan, und Andreas Wipf
    Springer, Berlin, Heidelberg, 2018
    available as an eBook at the following link
  • Klassische Mechanik (3. Aufl.)
    Herbert Goldstein, Charles R Poole, Jr., und John L Safko
    Wiley-VCH, Weinheim, 2006